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Abstract

Background: The horns and frill of Triceratops and other ceratopsids (horned dinosaurs) are interpreted variously as display
structures or as weapons against conspecifics and predators. Lesions (in the form of periosteal reactive bone, healing
fractures, and alleged punctures) on Triceratops skulls have been used as anecdotal support of intraspecific combat similar
to that in modern horned and antlered animals. If ceratopsids with different cranial morphologies used their horns in such
combat, this should be reflected in the rates of lesion occurrence across the skull.

Methodology/Principal Findings: We used a G-test of independence to compare incidence rates of lesions in Triceratops
(which possesses two large brow horns and a smaller nasal horn) and the related ceratopsid Centrosaurus (with a large nasal
horn and small brow horns), for the nasal, jugal, squamosal, and parietal bones of the skull. The two taxa differ significantly
in the occurrence of lesions on the squamosal bone of the frill (P = 0.002), but not in other cranial bones (P.0.20).

Conclusions/Significance: This pattern is consistent with Triceratops using its horns in combat and the frill being adapted as
a protective structure for this taxon. Lower pathology rates in Centrosaurus may indicate visual rather than physical use of
cranial ornamentation in this genus, or a form of combat focused on the body rather than the head.
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Introduction

Images of the three-horned dinosaur Triceratops battling with

conspecifics or the predator Tyrannosaurus have become ingrained

in both the scientific and the popular mind. Lesions (wounded or

diseased areas) on the horns, frill, and face of Triceratops specimens

have been cited as evidence in support of the defensive and

offensive nature of the animal’s cranial ornamentation [1–7]. An

alternative interpretation posits that these structures functioned in

visual display rather than combat [1,8]. To date, discussions of

osteopathology in Triceratops have been anecdotal, focusing on

generating speculative scenarios to explain instances of hypothe-

sized injury [1,7]. Without a rigorous statistical analysis, however,

it is impossible to relate injury patterns to specific behaviors.

We surveyed cranial specimens from adult individuals of the

ceratopsid dinosaurs Triceratops and Centrosaurus for bony lesions (see

Materials and Methods). The two animals differ greatly in cranial

ornamentation; Triceratops has two large supraorbital horncores and

a smaller nasal horncore, whereas Centrosaurus has a large nasal

horncore and a pair of small supraorbital horncores (Figure 1). In

modern horned animals, the morphology and location of the horns

is closely associated with combat styles [9,10]. By analogy, it is then

expected that if Centrosaurus and Triceratops engaged in horned

combat with conspecifics, the two genera would have had very

different forms of combat. Thus, relative rates of lesion occurrence

should differ between comparable cranial elements in both genera.

If cranial ornamentations were used exclusively for visual display

and/or species recognition, and not for physical contact, the two

taxa are predicted to have similar rates of incidence for cranial

lesions in all comparable cranial elements.

Results

Description of Pathologies
Cranial abnormalities observed in both taxa included periosteal

reactive bone, healed and healing fractures, and resorptive bone

lesions of unknown etiology (Figures 2,3). Only the first two

categories, considered most likely due to trauma [11], were

included in further statistical analysis (Figure 1, table S1).

Periosteal reactive bone reflects superficial trauma; the reaction is

caused by separation of the periosteum from underlying layers and

subsequent inflammatory response and healing of the bone [12].

Evidence of this injury presents as an elevated, remodeled ridge on

the external surface of the bone, which may cut across the normal

pattern of neurovascular impressions on the surface of the skull

(Figure 2). Periosteal reactive bone was the most common of the

observed pathologies (22 out of 26 observed lesions considered here).

Calluses associated with healed or healing fractures constitute

the second variety of observed lesions (Figure 3; 4 out of 26

observed lesions). Such features result from the several steps of

bone growth intended to reunify mechanically or pathologically

separated pieces of bone. The process progresses from a primary

callus with disorganized bone to a secondary callus of secondary

bone [13]. Because primary bone can be preserved, calluses can be

discovered in different stages of healing. The character and

appearance of calluses is difficult to predict as the proliferation of

PLoS ONE | www.plosone.org 1 January 2009 | Volume 4 | Issue 1 | e4252



bone at the site can vary from minimal to extremely exuberant

depending on the individual and the severity of the fracture. In the

fossil record, the fractures and calluses are often associated with an

overall displacement of the bone that extends for a considerable

area. Typically, fractures present as a full-thickness feature in the

bone with observed disturbances of the bone fabric on both the

medial and lateral aspects of the bone. This contrasts with

instances of periosteal reactive bone, which affect only one side of

the element.

Statistical Analysis
A G-test of independence was used for all comparisons [14,15].

Triceratops and Centrosaurus did not differ significantly in the rates of

lesion occurrence within the nasal, jugal, or parietal bones of the

skull (P.0.20 in all cases; Figure 1 and table S1 present full data).

In contrast, Triceratops had significantly higher prevalence of lesions

on the squamosal bone of the frill than did Centrosaurus (P = 0.002;

see Figure 1 and table S1 for full data, and Figure 3 for the sole

pathological squamosal from Centrosaurus).

Discussion

We reject the possibility that a generalized pathogenic factor

(such as a habitat-specific fungal infection) caused the differing

prevalence of lesions between Triceratops and Centrosaurus, because

all cranial elements should then show similar rates of incidence.

We also rule out predatory attacks as the primary cause of the

lesions, because similar large predators (tyrannosaurid theropods)

were present in the habitats for both genera, and we would thus

expect similar patterns of osteological abnormalities in both.

Alternatively, it might be claimed that Triceratops had more

frequent occurrence of lesions on the squamosal because this

element forms a greater proportion of the frill’s exposed area, and

was thus more likely to be injured, than in Centrosaurus (e.g.,

Figure 1). We tested this hypothesis by comparing the prevalence

of lesions in the entire frill of both taxa and still found a significant

difference between the two (3 pathological and 84 non-

pathological specimens for Centrosaurus; 10 pathological and 59

non-pathological specimens for Triceratops; P = 0.012; see Materials

Figure 1. Cranial lesions in horned dinosaurs. Schematics of the
skulls of (A) Triceratops and (B) Centrosaurus, showing incidence rates
of lesions (periosteal reactive bone and fracture calluses) on each cranial
element (number of abnormal elements / total number of elements).
Not to scale.
doi:10.1371/journal.pone.0004252.g001

Figure 2. Examples of periosteal reactive bone in selected specimens of Triceratops. Arrows indicate lesions on (A) the left jugal of YPM
1822 (Yale Peabody Museum, New Haven, Connecticut, USA) and (B) the right squamosal of YPM 1828. The inset skull graphics indicate the
approximate area of each photograph with a gray box.
doi:10.1371/journal.pone.0004252.g002
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and Methods for full explanation). Instead, the evidence appears to

be most consistent with the majority of cranial abnormalities in

Triceratops being generated by the horns of conspecifics. The

observed instances of periosteal reactive bone and healing

fractures are consistent with such non-random trauma, and the

elevated rates of abnormal bone morphology within the frill bones

are consistent with predictions from modeling of horn-to-horn

combat [2]. This suggests that the cranial ornamentation of

ceratopsids, particularly Triceratops, was not only for visual display

but that the horns also had a real role in physical combat.

It is important to note that we do not claim to infer a precise

cause for individual pathologies on certain specimens (that a slip of

a horn during a specific bout caused the injury to the jugal in YPM

1822, for example; Figure 2A). Certainly, at least some of the

pathologies noted here may not be due to combat. We only claim

that the overall pattern in all of the specimens is consistent with

intraspecific combat in Triceratops.

Non-ceratopsid neoceratopsians (e.g., Protoceratops), the evolu-

tionary predecessors of ceratopsids, possessed a thin, enlarged frill

but lacked elongated brow or nasal horns. Thus, the primitive

function of the frill (in addition to a role in jaw muscle attachment)

was probably that of display rather than cervical protection [1].

The later evolution of brow horns would have increased the

importance of a protective function for the frill, assuming that the

horns were used in combat. The relatively thickened, solid frill of

Triceratops may have been an exaptation for cervical protection, in

addition to a role in display. This suggests interesting possibilities

for the factors that drove the evolution of cranial morphology in

ceratopsids. Display probably was an important function for the

horns and frills in all ceratopsids, but not the only one. Horned

combat, and the consequences of injury from this combat, may

have been another important selective factor. Recent discoveries

strongly suggest that Centrosaurus evolved from an ancestor with a

Triceratops-like horn configuration [16]. One evolutionary inter-

pretation worthy of further consideration is that some ceratopsids

(such as Centrosaurus) lost their long brow horns or changed combat

styles as a way to reduce cranial injury. This interpretation also

suggests that the frill may not have had a protective function

within Centrosaurus (as evidenced by the reduced occurrence of

lesions on the squamosal, relative to Triceratops), but instead

functioned for species recognition and/or other forms of visual

display. Centrosaurus and some other ceratopsids may have focused

blows on an opponent’s torso rather than the skull; this is suggested

by the occurrence of fractured ribs in Centrosaurus, Pachyrhinosaurus,

and Chasmosaurus [17]. Statistical analysis and comparison with

rates of rib fracture in Triceratops, as well as rates of cranial bony

anomalies in additional taxa, may be informative in further

evaluating this hypothesis. Clearly, horned dinosaurs used their

cranial ornamentations for a variety of functions.

Materials and Methods

Specimens of Triceratops and Centrosaurus were examined for

evidence of bony abnormalities. In order to increase sample size, it

was assumed that isolated chasmosaurine ceratopsid elements

from the Hell Creek and Lance Formations were referable to

Triceratops. This is appropriate because Triceratops is overwhelm-

ingly the most common ceratopsid taxon in these formations, and

because the cranial morphology (particularly the horns) is quite

similar to other chasmosaurine from these formations (Torosaurus

and Diceratus). No distinction was made between Triceratops species,

Triceratops horridus and Triceratops prorsus, because of general

similarity in horn morphology as well as the difficulty in assessing

species for incomplete skulls. A similar approach was used for

Centrosaurus. Two species, Centrosaurus apertus and Centrosaurus

brinkmani, which differ only in minor details of the horns and frill,

were combined in the sample. Additional isolated centrosaurine

specimens from the Dinosaur Park Formation of Alberta were also

assumed to belong to Centrosaurus.

Cranial elements chosen for comparison included the nasal

(exclusive of the nasal horncore), jugal, squamosal, and parietal

(Figure 1), and they were selected based on their abundance in the

fossil record. All specimens were examined firsthand on original

fossil material. Abnormalities were identified as such by compar-

ison to ‘‘normal’’ elements. Individuals that were obviously

juvenile or subadult (as determined by periosteal bone texture

and development of ornamentation) were excluded, in order to

control for possible behavioral changes during ontogeny.

Each examined element was coded as ‘‘pathological’’ or

‘‘normal,’’ and the side of the element (right or left) was also

recorded. Because the parietal bone is fused into a single bilaterally

symmetric element, right and left sides of the bone were

distinguished relative to the midline. In Centrosaurus, some

specimens preserved the midline bar of the frill and only one

side. In this case, the elements were scored as belonging to the side

that was predominantly preserved, in order to avoid inflating the

Figure 3. Example of a fracture callus in Centrosaurus. Arrows indicate a lesion on the ventral surface of the isolated right squamosal (an
incomplete element) of TMP 82.18.108 (Royal Tyrrell Museum of Paleontology, Drumheller, Alberta, Canada), in ventral view. The inset skull graphic
indicates the approximate area of the photograph with a gray box.
doi:10.1371/journal.pone.0004252.g003
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sample size. Similarly, parietals consisting primarily of the midline

bar were also scored only as a single element.

For each element, the data were assembled into a 262 matrix,

with rows representing taxon and columns representing patholog-

ical state. For associated specimens preserving both right and left

elements, each side was counted separately in the matrix. This is

appropriate, because the pathologies counted here presumably

represented discrete events in the life of the animal instead of

systemic conditions [14]. In order to test the hypothesis that rates

of lesion occurrence within elements were independent of taxon, a

G-test of independence was applied to each 262 matrix [14,15]. A

significant test indicated that rate of occurrence was not

independent of taxon.

The squamosal, relative to the parietal, forms a greater

proportion of the frill in Triceratops than in Centrosaurus (Figure 1).

In order to test whether this could explain why Triceratops more

commonly exhibited lesions on the squamosal (because it could be

argued that the greater surface area, rather than any behavioral

factor, caused this), we conducted a second analysis looking at the

frill as a single element. As before, left and right frills (one

squamosal plus one half of a parietal) were counted separately, and

disarticulated or isolated frill elements were considered to

represent a single ‘‘frill’’ in order to maximize sample size. This

latter assumption was modified for specimens recovered from

bonebeds, in order to reduce the possibility that a single individual

(represented by two squamosals and two parietals) would be over

counted. Here, the number of squamosals and parietals from each

bone bed sample were compared, and the element with the

greatest representation was chosen as the N of frills for that

locality. For instance, a site with 5 parietals and 8 squamosals

would be considered to have 8 individual frills (rather than 13, if

the numbers were just added).

Supporting Information

Table S1 Specimens included in this study, by element. Each

specimen number listed is for a single element. Where numbers

are listed twice (once in pathological, once in nonpathological) or

indicated with a parentheses (2), this indicates that two elements

from the same individual were included in the sample.

Abbreviations: AMNH, American Museum of Natural History,

New York, New York; ASU, Appalachian State University,

Boone, North Carolina; CCM, Carter County Museum, Ekalaka,

Montana; CMN, Canadian Museum of Nature, Ottawa, Ontario;

DMNH, Denver Museum of Nature and Science, Colorado;

RAM, Raymond M. Alf Museum of Paleontology, Claremont,

California; ROM, Royal Ontario Museum, Toronto, Ontario;

SDSM, South Dakota School of Mines and Technology Museum

of Geology, Rapid City; TLAM, Timber Lake Area Museum,

South Dakota; TMP, Royal Tyrrell Museum of Palaeontology,

Drumheller, Alberta; UCMP, University of California Museum of

Paleontology, Berkeley; USNM, National Museum of Natural

History, Washington, D.C.; YPM, Yale Peabody Museum of

Natural History, New Haven, Connecticut. ffracture callus;
pperiosteal reactive bone

Found at: doi:10.1371/journal.pone.0004252.s001 (0.02 MB

DOC)
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