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Abstract
Knowledge about the types of nests built by dinosaurs can provide insight into the evolution

of nesting and reproductive behaviors among archosaurs. However, the low preservation

potential of their nesting materials and nesting structures means that most information can

only be gleaned indirectly through comparison with extant archosaurs. Two general nest

types are recognized among living archosaurs: 1) covered nests, in which eggs are incu-

bated while fully covered by nesting material (as in crocodylians and megapodes), and 2)

open nests, in which eggs are exposed in the nest and brooded (as in most birds). Previ-

ously, dinosaur nest types had been inferred by estimating the water vapor conductance

(i.e., diffusive capacity) of their eggs, based on the premise that high conductance corre-

sponds to covered nests and low conductance to open nests. However, a lack of statistical

rigor and inconsistencies in this method render its application problematic and its validity

questionable. As an alternative we propose a statistically rigorous approach to infer nest

type based on large datasets of eggshell porosity and egg mass compiled for over 120

extant archosaur species and 29 archosaur extinct taxa/ootaxa. The presence of a strong

correlation between eggshell porosity and nest type among extant archosaurs indicates

that eggshell porosity can be used as a proxy for nest type, and thus discriminant analyses

can help predict nest type in extinct taxa. Our results suggest that: 1) covered nests are

likely the primitive condition for dinosaurs (and probably archosaurs), and 2) open nests first

evolved among non-avian theropods more derived than Lourinhanosaurus and were likely

widespread in non-avian maniraptorans, well before the appearance of birds. Although

taphonomic evidence suggests that basal open nesters (i.e., oviraptorosaurs and troodon-

tids) were potentially the first dinosaurs to brood their clutches, they still partially buried their

eggs in sediment. Open nests with fully exposed eggs only became widespread among

Euornithes. A potential co-evolution of open nests and brooding behavior among manirap-

torans may have freed theropods from the ground-based restrictions inherent to covered

nests and allowed the exploitation of alternate nesting locations. These changes in nesting

styles and behaviors thus may have played a role in the evolutionary success of maniraptor-

ans (including birds).
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Introduction
Nests are varied structures that play an important role in archosaur biology because they are
used for incubating eggs and, in many species, for raising young. The nests can consist of sim-
ple scrapes or holes in the ground, bowl-shaped structures, or large vegetation mounds [1,2],
and their architecture is suited not only for the incubation of eggs in a given environment but
also for the incubation behavior/method of a species. Among extant archosaurs, two general
types of nest are observed: 1) covered nests, in which the eggs are covered by organic/inorganic
matter, are built by species that incubate their eggs using external heat sources (e.g., solar heat,
plant decomposition, or geothermal heat [3]), and 2) open nests, in which the eggs are not cov-
ered by substrate and left exposed, are built by species that brood their eggs. Because all croco-
dylian species build covered nests and all bird species, except those of megapodes, incubate
eggs in open nests [4], the transition from covered to open nest type likely occurred among
non-avian dinosaurs (e.g., [5]).

Nest types and associated nesting behaviors are poorly understood in extinct archosaurs,
including non-avian dinosaurs, in part because nest structures and nesting materials are rarely
preserved [6,7]. Even on the rare occasions where nest structures are found (e.g., excavations,
mounds; [7–10]), there is no indication of whether the eggs were covered by organic/inorganic
material or surrounded by nesting materials as typically found in living archosaurs. Conse-
quently, other evidence related to egg clutches, such as their taphonomic and sedimentologic
setting or eggshell structures (i.e., pore canals), have been used to infer the nest type of dino-
saurs (e.g., [7,11]).

Most prior studies have used a method that estimates the diffusive capacity of the eggshell,
referred to as water vapor conductance (i.e.,GH2O), to infer the types of nest built by dinosaurs.
Water vapor conductance in living archosaurs has usually been measured experimentally via
daily water loss of a fresh egg (e.g., [12,13]). A theoretical formula to calculate water vapor con-
ductance from eggshell porosity was also developed based on Fick's law of diffusion (herein
referred to as morphometric GH2O) [12]. This formula was used initially by Seymour [11] to
calculate GH2O for dinosaur eggs, and nest type was inferred on the premise that covered nests
are found in living species with high GH2O and open nests in species with low GH2O values.
Thus, morphometric GH2O values of dinosaurs were compared directly with experimental
GH2O values of living archosaurs (e.g., [11,14–17]), although the latter were calculated from
measurement of daily water loss of an egg (i.e., experimental GH2O) and not from the theoreti-
cal formula (i.e., morphometric GH2O). However, a recent study compared morphometric and
experimental GH2O values in living archosaur species, and demonstrated that these two data-
sets/methods are mutually incongruent, likely due to systematic errors [18]. Thus direct com-
parison between morphometric and experimental GH2O values, as widely applied to infer nest
type of dinosaurs, may not be valid.

As a viable alternative to the water vapor conductance method, we present a statistically rig-
orous approach using eggshell porosity in order to predict nest type in extinct archosaurs. We
apply this approach to the eggs of a variety of dinosaurs, including titanosaurs, the theropod
Lourinhanosaurus, oviraptorosaurs, and troodontids, in order to assess their nesting habits and
discuss the evolution of nest type and incubation behaviors among archosaurs.

Material and Methods
A series of methodological steps were taken to document the relationship between eggshell
porosity and nest types in crocodylians and birds in order to infer nest types in extinct archo-
saurs. Data on eggshell porosity (Ap�Ls-1, in mm), egg mass (M, in g), and nest types (see "Nest
classification for extant taxa") were compiled for living crocodylians and birds and
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subsequently compared statistically to test whether eggshell porosity relative to egg mass differs
between open and covered nest types. Eggshell porosity and egg mass were then estimated for a
variety of extinct archosaurs, including crocodylomorphs, non-avian dinosaurs, and birds.
Through comparison with the extant dataset, discriminant analyses were used to infer nest
types in extinct taxa. Both phylogenetic and non-phylogenetic (i.e., conventional) approaches
were applied for the statistical analyses.

Relationship betweenWater Vapor Conductance and Eggshell Porosity
Water vapor conductance of living species has usually been measured experimentally (e.g.,
[12,13]), but it has also been shown to be related to the geometry of eggshell pore canals. Ar
et al. [12] were the first to derive a mathematical equation to calculate morphometric water
vapor conductance (GH2O) using pore geometry in archosaur eggs. This equation is expressed
as:

GH2O ¼ c� DH2O

R� T
� Ap

Ls

ð1Þ

where c is a unit conversion constant (1.56 x 109 mgH2O�s�day-1�mol-1), DH2O is the diffusion
coefficient of water vapor (mm2�s-1) in air, R is the universal gas constant (6.24 x 107

mm3�torr�mol-1°K-1), T is the absolute temperature of incubation (°K), Ap�Ls-1 is eggshell
porosity, Ap is the total pore area of an egg (mm2), and Ls is pore length (mm) [12]. Since
many variables (i.e., c, DH2O, R, and T) can be safely assumed to be consistent among species
(e.g., [12,13,18]), the equation can be simplified and expressed as GH2O = 2.1�Ap�Ls-1 (see [18]).
Morphometric water vapor conductance is thus directly proportional to eggshell porosity.
Given that morphometric water vapor conductance (and hence eggshell porosity) is influenced
by absolute nest humidity (S1 Text), which in turn is correlated with nest architecture or type
(covered vs. open, see [19]), a correlation between eggshell porosity and nest types can be
sought (see S1 Text for further explanation).

Selection of extant taxa
Eggshell porosity, egg mass and nest type for 127 species of extant birds and crocodylians were
gathered from either the literature (see [18]) or via new measurements of egg specimens (S2, S3
and S4 Tables). Egg specimens were permitted to be accessed from the institutions listed in S2
Table. The dataset includes only species with pore canals that approximate simple
(unbranched) or tubular structures because porosity of eggshells with more complex pores
(e.g., branched pores) could not be accurately estimated (e.g., Casuarius, Dromaius, Pterocne-
mia, Rhea, and Struthio; [20–23]). Although some pores of crocodylian eggshells may be irreg-
ularly shaped, they are usually simple and straight [24] and are here assumed to be tubular.

Nest classification for extant taxa
Nest structures of extant archosaurs were classified into two general types, covered nests and
open nests, based on information available in the literature (S4 Table). Covered nests are
defined as those in which the eggs are completely covered with vegetation and/or sediment
(e.g., mound or infilled hole nests on/in the ground), whereas open nests are those in which the
eggs are partly or fully exposed, and may have nest materials surrounding a portion of the eggs
(e.g., scrape, cup, plate, and dome nests) (see [19]).

Certain aquatic birds (e.g., Podicipediformes, Cygnus, Oxyura, Chlidonias niger, and Gavia
immer) were excluded from this study due to their unusual nesting style. Because these birds
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build open nests floating on water with nest materials that can be wet [25–29], presumably
resulting in high nest humidity [19,25–27], their eggshell porosity and water vapor conduc-
tance are anomalously high for birds with open nests [13,26,30].

Selection of fossil eggs/ootaxa
Eggshell porosity and egg mass for 29 extinct archosaur taxa and ootaxa (i.e., egg taxa) were
compiled from the literature or from new/additional measurements of egg specimens listed in
S2 Table. Only species and oospecies with simple pore canals and for which data for individual
pore area, pore density, pore length, and egg length and breadth were available were included
in this study (Table 1). Eggs and ootaxa with complex or irregular pores {e.g., Dendroolithidae
(Torvosaurus and possibly therizinosaur), Faveoloolithidae (?Sauropodomorpha), Ovaloolithi-
dae (?Ornithopoda), and Spheroolithidae (Maiasaura-like eggs, presumably hadrosaur)} and
taxa/ootaxa for which the data were potentially derived from the combination of multiple oos-
pecies (e.g. 'Hypselosaurus' and 'Protoceratops' in [11] and Elongatoolithidae in [31,32]) were
not included in this study. Also, eggshell porosity for enantiornithine eggs (e.g. 'Gobipteryx
minuta' in [31]) was not estimated in our study because the original article [31] indicated ques-
tionable values for both total number of pores and individual pore area.

The taxonomic affinity of most ootaxa considered in this study is well-established, particu-
larly at higher taxonomic levels. For example, the ootaxon Bauruoolithus is attributed to a cro-
codylomorph based on eggshell microstructure [33]. The ootaxonMegaloolithus patagonicus is
referred to a titanosaur based on its association with embryonic remains [49,50], thus eggs of
the Megaloolithidae oofamily are widely regarded as belonging to sauropods [49,51,52]. For-
merly classified in Megaloolithidae, the ootaxon Cairanoolithus has recently been re-assigned
to a new oofamily, Cairanoolithidae, by Sellés and Galobart [53] who suggested it may belong
to an ornithischian dinosaur.

The taxonomic identity of some theropod eggs is also known based on association with
either embryonic or parental skeletal remains. These include the eggs of Lourinhanosaurus
antunesi, a large theropod of either allosauroid [54,55] or coelurosaurian [56] affinity, the
ootaxonMacroolithus yaotunensis, assigned to an oviraptorosaur [57], and the ootaxon Pris-
matoolithus levis, assigned to Troodon formosus [58]. Elongatoolithid and prismatoolithid
ootaxa are attributed to Oviraptorosauria [57,59–64] and non-oviraptorosaur maniraptorans
[46,65], respectively, based on eggshell microstructure similarities with eggs of known taxo-
nomic identity. The ootaxon Continuoolithus is assigned to an indeterminate theropod based
on egg and eggshell morphology [9,39,66]. Moa eggshells have been assigned to two small-bod-
ied (female body masses 20–30 kg) species, Pachyornis geranoides and Euryapteryx sp., based
on DNA analyses [48].

Eggshell porosity
Eggshell porosity (Ap�Ls-1, in mm) of both living and extinct archosaurs was determined by
dividing the total pore area of an egg (Ap, in mm2) by pore length (Ls, in mm) (Tables 2 and 3;
Fig 1A and 1B), except forMacroolithus yaotunensis by [44] where eggshell porosity was calcu-
lated based on its morphometric GH2O value. Total pore area of an egg was calculated by multi-
plying individual pore area (A, in mm2) by pore density (D, in mm-2) and eggshell surface area
(As, in mm2). When pore density was not available in the literature, total pore area was calcu-
lated by multiplying individual pore area by the total number of pores in an egg (N). Because
more than one value was usually available for each variable (i.e., A, D, Ls, N, egg length, egg
breadth), a mean value was calculated from the various sources/samples for each taxon/
ootaxon.
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For taxa/ootaxa where eggshell porosity values could not be obtained from the literature,
they were calculated from the measurement of relevant variables in thin sections of eggshell
specimens. Whenever possible, eggshell samples were taken from different regions of an egg
(i.e., around equator and two poles) in order to capture regional variation. Shell thickness,
which can be used as a proxy for pore length [12,13], was measured with a digital micrometer

Table 1. List of extinct archosaur taxa/ootaxa with estimated eggmass (M) and eggshell porosity (Ap�Ls-1) used in this study.

Family or oofamily(Possible
taxonomic affinity)

Taxon or ootaxon log
M

log
Ap�Ls

-1
Sources

Krokolithidae (Crocodylomorpha) Bauruoolithus fragilis 1.599 1.687 Oliveira et al. [33]

Cairanoolithidae (Ornithischia?)/
Fusioolithidae

Cairanoolithus dughii 3.468 2.732 Williams et al. [14]; Garcia and Vianey-Liaud [34]

Cairanoolithus roussetensis 3.430 2.761 Garcia and Vianey-Liaud [34]

Megaloolithidae (Sauropoda) /
Fusioolithidae

Megaloolithus aureliensis 3.705 3.327 Garcia and Vianey-Liaud [34]

Megaloolithus mammilare 3.716 3.055 Williams et al. [14]; Garcia and Vianey-Liaud [34]

Megaloolithus microtuberculata 3.351 2.602 Garcia and Vianey-Liaud [34]

Megaloolithus patagonicus/
titanosaur sauropod

3.107 2.703 Jackson et al. [16]; Grellet-tinner et al. [35]

Megaloolithus petralta 3.420 2.788 Garcia and Vianey-Liaud [34]

Megaloolithus pseudomamillare 3.550 2.842 Garcia and Vianey-Liaud [34]

Megaloolithus siruguei 3.622 3.327 Williams et al. [14]; Lopez-Martinez et al. [36]; Garcia and
Vianey-Liaud [34]; Deeming [15]; Jackson et al. [16]

Megaloolithus cf. siruguei 3.325 3.138 Grigorescu et al. [37,38]

Megaloolithus sp. (recrystallized) 3.267 2.548 Zelenitsky pers obs. (cited in [15])

Megaloolithus sp. (non-
recrystallized)

3.430 3.090 Zelenitsky pers obs. (cited in [15])

Undetermined megaloolithid
oospecies 1

3.235 3.085 Williams et al. [14]

Undetermined megaloolithid
oospecies 2

3.081 2.458 Grellet-tinner et al. [35]

Oofamily Indet. (Non-avian
theropod)

Continuoolithus canadensis 2.320 1.785 Jackson et al. [39]

Allosauroidea?/ Coelurosauria? Lourinhanosaurus antunesi 2.799 2.377 Antunes et al. [40]; Deeming [15]

Elongatoolithidae
(Oviraptorosauria)

Elongatoolithus andrewsi* 2.584 1.621 Zhao [1975]; Mou [41]

Elongatoolithus elongatus 2.411 1.659 Zhao et al. [42]

Macroelongatoolithus xixiaensis 3.488 2.415 Zelenitsky pers obs. (cited in [15])

Macroolithus rugustus* 2.772 1.642 Zhao [43]; Mou [41]

Macroolithus yaotunensis*/
oviraptorosaurs

2.911 1.835 Zhao [43]; Mou [41]; Wiemann et al. [44]

Prismatoolithidae (Non-
oviraptorosaur maniraptoran)

Prismatoolithus levis/ Troodon
formosus

2.463 1.213 Zelenitsky and Hills [45]; Varricchio et al. [17]; Zelenitsky
pers obs. (cited in [15]; this study

Protoceratopsidovum fluxuosum 2.411 1.602 "Ornamented protoceratopsid egg" in Sabath [31]

Protoceratopsidovum minimum 2.106 1.523 "Thin-shelled protoceratopsid egg" in Sabath [31]

Protoceratopsidovum sincerum 2.380 1.465 "Smooth-shelled protoceratopsid egg" in Sabath [31]

Sankofa pyrenaica 1.788 0.478 Lopez-Martinez and Vicens [46]

Dinornithiformes (moas) Euryapteryx sp. 2.771 1.765 Gill [47]; Huynen et al. [48]; this study

Pachyornis geranoides 2.771 1.41 Gill [47]; Huynen et al. [48]; this study

Asterisk (*) indicates that eggshell thickness was taken from Zhao [43] because Mou [41] provided only the thickness of the continuous layer as pore

length.

doi:10.1371/journal.pone.0142829.t001
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Mitutoyo CPM30-25MJ (precision = 2 μm). Individual pore area was measured from tangen-
tial thin sections of eggshells using a Leica DM2500P petrographic microscope (Fig 1C–1E) fol-
lowing the procedures of [18]. For pore counting in living birds, the inner surface of the
eggshells was stained with methylene blue solution to accentuate the pores (see [13]). Pore den-
sity was estimated by counting the number of pore openings on the outer surface of eggshells
using a Leica M80 binocular microscope, following the procedure of Tanaka and Zelenitsky
[18]. Pore density in Troodon was estimated from tangential thin sections because the outer
surface was poorly preserved. Eggshell surface area was calculated from maximum egg length
(L, in mm) and breadth (B, in mm), both obtained from the literature, using the equations of
Paganelli et al. [67] and Hoyt [68] (Tables 2 and 3), except for the ootaxa Elongatoolithus
andrewsi,Macroolithus rugustus, andM. yaotunensis for which eggshell surface area were
obtained fromMou [41]. Because egg length and breadth of the Pachyornis geranoides and Eur-
yapteryx sp. specimens studied are unknown, these values were taken from intact eggs (AIM
LB4003, LB4005, and an unregistered AIM egg of [47]) found at the same locality, which show
comparable eggshell thickness and pore morphology to the specimens used in our study
[69,70].

A possible caveat for the calculation of porosity in fossil eggshells is that diagenesis can alter
pore dimensions [16,71]. Diagenetic dissolution for example can decrease pore length and
enlarge pore canals, resulting in overestimation of eggshell porosity [16,71]. Because most val-
ues for fossil specimens were obtained from the literature it is impossible to assess the impact
of diagenetic alteration on the ootaxa considered in this study. We proceed with the assump-
tion that, overall, diagenesis did not significantly affect calculation of eggshell porosity.

Egg mass
Mean egg mass (M, in g) for living and extinct archosaurs was compiled for this study. Egg
mass for living species was obtained from the literature (S3 Table) and that for fossil taxa/

Table 2. List of variables used for this study, modified from Tanaka and Zelenitsky [18].

Variable Definition Unit

A Individual pore area μm2

Ap Total pore area mm2

Ap�Ls-1 Eggshell porosity mm

As Surface area of eggshell mm2

B Maximum egg breadth mm

D Pore density mm-2

L Maximum egg length mm

Ls Shell thickness (= pore length) mm

M Egg mass g

N Total number of pores per egg

V Egg volume mm3

doi:10.1371/journal.pone.0142829.t002

Table 3. List of equations used for this study, modified from Tanaka and Zelenitsky [18].

Equation Sources

Ap = A�As�D = A�N Seymour [11]

As = 4.951�V0.666 Paganelli et al. [67]

M = 5.48�10−4�LB2 Hoyt [68]

V = 0.51�LB2 Hoyt [68]

doi:10.1371/journal.pone.0142829.t003
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ootaxa was estimated from egg length and breadth using the equation of Hoyt [68] (Table 3).
Although other methods exist to estimate fossil egg mass (see [17]), they produce results that
are consistent (within 10%) with Hoyt’s [68] method [17,39]. Therefore, for consistency, we
applied Hoyt's method to all extinct ootaxa/taxa. Egg mass for Elongatoolithus andrewsi,
Macroolithus rugustus, andM. yaotunensis was taken fromMou [41], who had used Hoyt's
[68] method to derive his estimates.

Phylogenetic distribution of nest type
The nature of the phylogenetic distribution (i.e., random vs. clumped) of nest types among liv-
ing archosaurs was investigated based on our compiled extant dataset. Because nest type can be
coded as a binary trait (covered vs. open), Fritz and Purvis' [72] D statistic was calculated by
running 1000 permutations of the 'phylo.d' function of the package 'caper' using the software
platform R3.1.3 (http://www.r-project.org/). For the D statistic, a value equal to or higher than
1.0 indicates a random phylogenetic distribution, whereas a value equal to or lower than 0 indi-
cates a non-random phylogenetic distribution (i.e., phylogenetically clumped). The 'phylo.d'
function provides p values to indicate whether the estimated D statistic is significantly different
from 0 and 1, respectively.

The D statistic was run using a phylogenetic tree of 127 species of living birds and crocody-
lians compiled from the large-scale phylogeny of Jarvis et al. [73] and other publications for
small-scale interrelationships (S3 Fig). Branch length was estimated from the divergence times
of each node following the procedures of Motani and Schmitz [74] and Schmitz and Motani
[75]. Divergence times of major clades were obtained from Time Tree (http://timetree.org) for
birds and from Oaks [76] for crocodylians. Terminal taxon ages were set to zero. The

Fig 1. Porosity of archosaur eggshell. Schematic diagram of archosaur eggshell with high porosity (A) and low porosity (B), modified from [18]; tangential
thin sections of living covered nesterCaiman latirostris (C), living open nester Pavo cristatus (D), and non-avian maniraptoran Troodon formosus (E).
Abbreviations; A, individual pore area; D, pore density; Ls, pore length. Arrows indicate pore canals.

doi:10.1371/journal.pone.0142829.g001
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phylogenetic tree and character matrix were constructed with the PDAP module v.1.16 [77] of
the software Mesquite 3.02 [78].

Analysis of covariance
Eggshell porosity relative to egg mass was compared between extant open-nesting and cov-
ered-nesting archosaurs using both conventional and phylogenetically-corrected analysis of
covariance (ANCOVA and pcANCOVA, respectively). Non-phylogenetic, ordinary least-
squares regression (OLS) was implemented for conventional ANCOVA with IBM SPSS Statis-
tics v. 22.0.0 (IBM SPSS Inc.), whereas phylogenetically-corrected ANCOVA was implemented
with the MATLAB (MathWorks Inc.) program Regressionv2.m (available upon request from
T. Garland Jr.) following the method of Lavin et al. [79]. A phylogenetic variance-covariance
matrix for Regressionv2.m was generated with the DOS PDDIST program [80]. Regressions
for pcANCOVA were generated with two evolutionary models: regressions with Brownian
motion (PGLS) and Ornstein-Uhlenbeck models (RegOU). PGLS assumes an evolutionary
process with "random walk in continuous time" (e.g., [79]), whereas RegOU assumes an evolu-
tionary process of "wandering back and forth on a selective peak" [79,81,82]. These three
regression models (OLS, PGLS, and RegOU) were compared using the Akaike Information
Criterion (AIC) to determine the best fit model of regression, where a lower AIC value indi-
cates a better fit (e.g., [79,83,84]).

Nest type (open and covered nests) was considered a categorical variable, a covariate of egg
mass, and a dependent variable of eggshell porosity in these analyses. Values of eggshell poros-
ity (Ap�Ls-1) and egg mass (M) were log-10 transformed prior to analysis. The normality and
homogeneity of variances of the dataset were tested by non-phylogenetic Shapiro-Wilk tests
and Levene tests using IBM SPSS Statistics v. 22.0.0. Residuals of log Ap�Ls-1, calculated from
OLS regressions for each nest type, were used for the Shapiro-Wilk tests.

The phylogenetic tree compiled for the D statistic (see above) was used for the pcANCOVA.
In addition to the branch length determination method based on divergence time used for the
D statistic, an arbitrary standardized method was also applied to assign branch length for the
pcANCOVA because branches were not adequately standardized by divergence time. An arbi-
trary branch length model was used by following the procedure of Garland et al. [85], resulting
in all branch lengths equal to one.

Discriminant analysis
Nest type of fossil taxa/ootaxa was inferred by analyzing their eggshell porosity using conven-
tional, non-phylogenetic linear discriminant analysis (LDA) and the phylogenetic flexible dis-
criminant analysis (pFDA) of Schmitz and Motani [75]. While LDA was applied to all extinct
taxa and ootaxa examined, pFDA could only be used for fossil eggs of known taxonomic affini-
ties (i.e., titanosaurs, Lourinhanosaurus, oviraptorosaurs, Troodon, and moas) as knowledge of
the precise phylogenetic relationships between taxa is required for this method. Linear discrim-
inant analysis was implemented with IBM SPSS Statistics v. 22.0.0, whereas pFDA was con-
ducted in R3.1.3 with the phylo.fda.v0.2.R script provided by L. Schmitz (https://github.com/
lschmitz/phylo.fda). LDA and pFDA were used to compare log-transformed values of eggshell
porosity and egg mass of extinct archosaurs to those of living archosaurs (grouped a priori into
open and covered nests categories) to infer the nest type for each extinct taxon/ootaxon. In
order to test if a phylogenetic bias affects the form-function relationship in the dataset, the
pFDA method provides an estimate of Pagel's lambda, where a lambda value of zero reveals no
phylogenetic bias and a value of one indicates a strong bias where character evolution follows
the Brownian motion model [74]. The pFDA method also provides a series of predictions for
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each taxon as a function of changing lambda value from 0 to 1. Prior probabilities of nest types,
which are required for discriminant analyses, were based on the proportions of open and cov-
ered nest types found in the dataset of living archosaurs since the proportion of each nest type
in extinct archosaurs is unknown. The misclassification rate was calculated for both LDA and
pFDA based on the proportion of erroneously classified species. Since the misclassification rate
of pFDA varies as a function of lambda values, the change in the overall misclassification rates
through lambda values from 0 to 1 was also determined.

For pFDA, six extinct taxa were included in the composite phylogenetic tree of living archo-
saurs (S4 Fig). Because pFDA requires divergence times for estimation of branch length, phylo-
genetic relationships and divergence times of the extinct archosaur taxa were obtained from
Bunce et al. [86], Choiniere et al. [87], Nesbitt [88], and Phillips et al. [89]. Terminal taxon ages
were not precisely known for most extinct taxa but were approximated from fossil occurrence
ages or geologic ages of formations in which taxa/ootaxa occur as reported by Gill [90], Rigby
et al. [91], Chiappe et al. [49], Cunha et al. [92] and Varricchio et al. [17].

Results

Estimated D statistic
The estimated D statistic of nest type in the dataset of living archosaur species is -1.09, which is
significantly different from 1 (p<< 0.01) but not from 0 (p = 1.00). This D statistic indicates
the presence of a strong phylogenetic bias in the distribution of nest types among archosaurs.

Analysis of covariance (ANCOVA)
Eggshell porosity, relative to egg mass, was compared among living archosaurs with covered
(n = 20) and open nest types (n = 107) (Fig 2). Eggshell porosity between the two types is nor-
mally distributed (p = 0.49 and 0.15 for open and covered nest types, respectively) and homo-
geneity of variances is observed (p = 0.83), indicating that a parametric test is appropriate for
the dataset. Eggshell porosity is shown to be strongly correlated to egg mass in taxa with open
nests (r = 0.87, p< 0.01) and moderately correlated in species with covered nests (r = 0.52,
p< 0.05) (Table 4). Both conventional and phylogenetically-corrected ANCOVA reveal that
the slopes between these two nest types are not significantly different (p>> 0.05). Further-
more, the intercept of the regressions, and thus eggshell porosity relative to egg mass, is found
to be significantly higher in the covered nest type than the open nest type (p< 0.01, Table 5;
Fig 2) except using the PGLS model where branch length was estimated from divergence time
(p = 0.11), which showed no significant difference in intercept. Of all the conventional and
phylogenetically-corrected methods used, the RegOU model, where divergence time was used
for branch length assignment, has the lowest AIC value and is thus considered the best-fit
regression model tested (Table 5). The AIC value of the PGLS model is much higher than for
the other models (i.e., OLS and RegOU) regardless of the methods for branch length assign-
ment, indicating that the PGLS models were the poorer fit for our dataset.

Discriminant analysis
When phylogenetic relationships are not taken into consideration, the linear discriminant
analysis reveals that nest type can be predicted from eggshell porosity and egg mass among liv-
ing archosaurs. From the dataset, 123 of the 127 extant bird and crocodylian species were clas-
sified correctly, resulting in an overall misclassification rate of only 3.15% (one open nester and
three covered nesters were misclassified; Table 6). Applying this method to extinct archosaurs,
crocodylomorphs (Bauruoolithus), possible ornithischians (Cairanoolithidae), sauropods
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(Megaloolithidae), and two non-avian theropods (Lourinhanosaurus and Continuoolithus)
were classified as covered nesters, whereas most oviraptorosaurs (Elongatoolithidae), Troodon
(i.e., Prismatoolithus levis), and other avian and non-avian theropods (most Prismatoolithidae
and moas) were classified as open nesters (Table 7; Fig 3). Unlike other elongatoolithid and
prismatoolithid eggs, Elongatoolithus elongatus and Protoceratopsidovum minimum were clas-
sified into the covered nest type. Posterior probabilities of extinct taxa/ootaxa were generally
high (> 0.70), indicating that their predicted nest types were well differentiated from the other
types. Two ootaxa, E. elongatus and Pro. fluxuosum, have posterior probabilities close to 0.50,
which indicates that their eggshell porosity is close to the threshold between covered and open
nest types.

When phylogenetically-corrected methods are used, the pFDA reveals that the optimum
Pagel's lambda value is 0.56, which indicates that a moderately high phylogenetic bias exists in
the dataset. The pFDA correctly classified 107 of 127 living species, resulting in an overall

Fig 2. Bivariate plot of eggshell porosity and eggmass between living covered and open nesters. Eggshell porosity relative to egg mass is highly
correlated to nest types (p < 0.01), as reflected by the different regression models between closed and open nesters.

doi:10.1371/journal.pone.0142829.g002

Table 4. Results of conventional OLS regression models for living archosaur species.

Type n Slope CI of slope Intercept CI of intercept r2

Covered nester 20 0.874 0.161 to 1.587 -0.290 -1.699 to 1.119 0.269

Open nester 107 1.117 0.994 to 1.239 -1.453 -1.668 to -1.239 0.756

Abbreviations: CI, 95% confidence interval; n, sample size; r2, coefficient of determination.

doi:10.1371/journal.pone.0142829.t004
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misclassification rate of 15.75% (Table 6). Although all extant archosaurs with an open nest
type were classified correctly, none of the 20 species with a covered nest type was classified cor-
rectly. Thus, the pFDA misclassification rate for extant covered nesters is 100%. The overall
misclassification rate increases with increasing Pagal's lambda value, where the lowest misclas-
sification rate was found at lambda values�0.01 (Fig 4). At optimal Pagel's lambda value,
results of the phylogenetically-corrected discriminant analysis are consistent with the results of
the conventional method (i.e., titanosaurs and Lourinhanosaurus are covered nesters, and ovir-
aptorosaurs, Troodon, and moas are open nesters; Table 8, Fig 5). Results of the pFDA do not
change at non-optimal Pagel's lambda values except for oviraptorosaurs, which change to cov-
ered nesters at lambda values between 0.08 and 0.52, and for titanosaurs and Lourinhano-
saurus, which change to open nesters when lambda values approach one (Fig 6).

Interpretation of Statistical Results
Conventional and phylogenetically-corrected discriminant analyses produce results that differ
for living taxa (i.e., higher misclassification rate in phylogenetically-corrected analysis, particu-
larly among covered nesters) but that are consistent for fossil taxa (i.e., extinct taxa are assigned
to the same nest type in both types of analysis). The LDA reveals that eggshell porosity (relative
to egg mass) predicts accurately nest type in living archosaurs (i.e., low misclassification rate).
Since the precise taxonomic affinity, and hence phylogenetic position, is unknown for most
fossil eggs, conventional methods such as LDA should be used for these specimens in order to
obtain reliable inferences of nesting habits. In contrast when phylogenetic relationships are
taken into consideration, misclassification rate is high among living species due to the presence
of a phylogenetic bias in the dataset (i.e., high optimal Pagal’s lambda value in pFDA and low
D statistic value). This phylogenetic bias is due to the fact that covered nests are restricted to

Table 5. Results of conventional and phylogenetically-corrected ANCOVA for living archosaur species.

Branch length assignment Model F d.f. p AIC

None OLS 108.797 1, 124 << 0.01 25.580

Branch length = 1 PGLS 11.568 1, 124 0.001 53.669

Branch length = 1 RegOU 70.111 1, 124 << 0.01 25.007

Divergence time PGLS 2.542 1, 124 0.113 72.841

Divergence time RegOU 81.941 1, 124 << 0.01 17.578

Abbreviations: AIC, akaike information criterion; d.f., degree of freedom; F, test statistic; OLS, ordinary least-squares; PGLS, phylogenetic generalized

least-squares assumed Brownian motion process; RegOU, phylogenetic regression with Ornstein-Uhlenbeck process. The lowest AIC value is shown with

bold.

doi:10.1371/journal.pone.0142829.t005

Table 6. Cross-classification/ confusionmatrix from LDA and pFDA.

LDA pFDA

Covered nest Open nest Covered nest Open nest

Covered nest 17 1 0 0

Open nest 3 106 20 107

% Correct 85.000% 99.065% 0% 100%

Overall misclassification rate 3.150% 15.748%

The true classifications are along the top and the predicted classifications are on the left-hand side.

doi:10.1371/journal.pone.0142829.t006
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two relatively basal clades of extant archosaurs (i.e., Crocodylia and Megapodiidae), resulting
in a clumped phylogenetic distribution of this trait (S3 Fig). Previous studies that have used the
pFDA method usually obtained lower optimal lambda values (< 0.20; see [75,93–95]), which
indicates that the phylogenetic distribution of their traits was more randomly distributed (i.e.,
less clumped) than in our study.

When phylogenetic relationships were taken into consideration with the pFDA method, the
misclassification rates increased. The overall misclassification rate increases with increasing
lambda values (Fig 4): the misclassification rate is at its lowest (3.15%) at low Pagal’s lambda
values (�0.01) and at its highest (15.75%) at high lambda values (� 0.55), including at the opti-
mal lambda value. This pattern is opposite that observed by Motani and Schmitz [74], the only
study to have shown a change in misclassification rate with changing lambda values, where
they observed the lowest misclassification rate around the optimal Pagal’s lambda value. The
fact that pFDA assumes the Brownian motion model, which was the worst fit model for our
dataset according to pcANCOVA, could explain the poor performance of this method in our
study. Other methods, such as the Ornstein-Uhlenbeck model, which produced the best fit in

Table 7. Inferred nest types for extinct archosaurs based on the linear discriminant analysis.

Family/oofamily Taxon/ootaxon Prediction Posterior probabilities

Covered nest Open nest

Krokolithidae Bauruoolithus fragilis Covered nest 1.000 0.000

Cairanoolithidae/ Fusioolithidae Cairanoolithus dughii Covered nest 0.747 0.253

Cairanoolithus roussetensis Covered nest 0.849 0.151

Megaloolithidae/ Fusioolithidae Megaloolithus aureliensis Covered nest 0.992 0.008

Megaloolithus mammilare Covered nest 0.881 0.119

Megaloolithus microtuberculata Covered nest 0.704 0.296

Megaloolithus patagonicus (titanosaur sauropod) Covered nest 0.985 0.015

Megaloolithus petralta Covered nest 0.889 0.111

Megaloolithus pseudomamillare Covered nest 0.804 0.196

Megaloolithus siruguei Covered nest 0.996 0.004

Megaloolithus cf. siruguei Covered nest 0.999 0.001

Megaloolithus sp. (recrystallized) Covered nest 0.753 0.247

Megaloolithus sp. (non-recrystallized) Covered nest 0.994 0.006

Undetermined megaloolithid oospecies 1 Covered nest 0.896 0.104

Undetermined megaloolithid oospecies 2 Covered nest 0.999 0.001

Oofamily Indet. Continuoolithus canadensis Covered nest 0.909 0.091

Allosauroidea?/ Coelurosauria? Lourinhanosaurus antunesi Covered nest 0.978 0.022

Elongatoolithidae Elongatoolithus andrewsi Open nest 0.139 0.861

Elongatoolithus elongatus Covered nest 0.543 0.457

Macroelongatoolithus xixiaensi Open nest 0.091 0.909

Macroolithus rugustus Open nest 0.033 0.967

Macroolithus yaotunensis (oviraptorosaurs) Open nest 0.061 0.939

Prismatoolithidae Prismatoolithus levis (Troodon formosus) Open nest 0.008 0.992

Protoceratopsidovum fluxuosum Open nest 0.402 0.598

Protoceratopsidovum minimum Covered nest 0.842 0.158

Protoceratopsidovum sincerum Open nest 0.185 0.815

Sankofa pyrenaica Open nest 0.003 0.997

Dinornithidae Euryapteryx sp. Open nest 0.107 0.893

Pachyornis geranoides Open nest 0.003 0.997

doi:10.1371/journal.pone.0142829.t007
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pcANCOVA, may work better for our dataset, although this model cannot be performed in
pFDA. A possible solution to this problem is to use LDA rather than pFDA until the latter
method is developed further. Regardless of the high misclassification rate of the pFDA, infer-
ences of nest type for extinct archosaurs are consistent between LDA and pFDA (at optimal
lambda value).

Discussion
Our results reveal that eggshell porosity, expressed relative to egg mass, is highly correlated
with nest type among living archosaurs in that eggs incubated in covered nests have a signifi-
cantly higher eggshell porosity than those incubated in open nests. This newly discovered cor-
relation permits the use of a discriminant analysis (LDA, pFDA) to infer nest type among
extinct archosaurs, which could not be achieved with previous methods. Although pFDA strug-
gled to correctly classify living species based on eggshell porosity, possibly due to built-in
assumptions of evolutionary mode, results of LDA and pFDA were consistent for fossil taxa.

The eggshell porosity approach developed here is methodologically consistent and uses sta-
tistical rigor to infer nest type in extinct archosaurs, unlike the previous method based on

Fig 3. Bivariate plot of eggshell porosity and eggmass in both living and extinct archosaur taxa/ootaxa. Titanosaurs and Lourinhanosaurus show
high eggshell porosity, comparable to living species with covered nests. In contrast, oviraptorosaurs, Troodon, and moas show lower eggshell porosity,
similar to species with open nests.

doi:10.1371/journal.pone.0142829.g003
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water vapor conductance (GH2O). For the GH2O method, nest type inference relies on compari-
sons between GH2O values measured experimentally for fresh eggs for living taxa and GH2O val-
ues estimated from egg/eggshell morphometric data for fossil taxa. The issues with this method
are that: 1) the experimental and morphometric approaches do not produce results that are
mutually consistent for living species, and thus comparisons between them should be avoided
[18], and 2) a correlation between GH2O (neither experimental nor morphometric) and nest
type has never been established in living taxa. In contrast, the eggshell porosity method pro-
posed here relies exclusively on egg/eggshell morphometric data obtained from both living and
extinct taxa and is based on a demonstrated (and statistically-significant) correlation between
eggshell porosity and nest type.

Our study reveals that sauropods, the theropod Lourinhanosaurus, and the potential ornith-
ischian ootaxon Cairanoolithus had covered nests based on relatively high eggshell porosity, a
result that is in agreement with most previous GH2O studies [14,15,35,40], except one [16].

Fig 4. Misclassification rate of pFDA for living species through changing Pagel's lambda values.Dash
line shows the optimal lambda value of 0.56. Note that the overall misclassification rate increases with
increasing lambda values from 0 to 1.

doi:10.1371/journal.pone.0142829.g004

Table 8. Inferred dinosaur nest types based on the phylogenetic flexible discriminant analysis.

Taxon/ootaxon Prediction Posterior probabilities

Covered nest Open nest

Megaloolithus patagonicus (titanosaur sauropod) Covered nest 0.888 0.112

Lourinhanosaurus antunesi Covered nest 0.898 0.102

Macroolithus yaotunensis (oviraptorosaurs) Open nest 0.487 0.513

Prismatoolithus levis (Troodon formosus) Open nest 0.357 0.643

Euryapteryx sp. Open nest 0.358 0.642

Pachyornis geranoides Open nest 0.243 0.757

doi:10.1371/journal.pone.0142829.t008
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Most oviraptorosaurs (Elongatoolithidae) are classified here as open nesters due to relatively
low porosity values (also determined by [44]), although several previous GH2O studies have
inferred covered nests (e.g., [15,41,42,96]). This discrepancy may be due to the fact that nest
type was determined subjectively in these earlier studies, due to a lack of rigorous statistical
analysis (Fig 3). Troodon formosus and two of three Protoceratopsidovum oospecies have rela-
tively low eggshell porosity values and are inferred to have been open nesters, results consistent
with the previously reported low GH2O values for Troodon and Protoceratopsidovum
[15,17,31].

When considered in a phylogenetic context, our results shed light on the evolution of nest
types among dinosaurs (Fig 7). The presence of covered nests in crocodylomorphs, titanosaurs,
the theropod Lourinhanosaurus, and probably ornithischians (Cairanoolithus) indicates that
these nests were likely the primitive condition in Dinosauria and possibly Archosauria. In con-
trast, open nests with partly or fully exposed eggs were present among oviraptorosaurs, troo-
dontids, and birds, and thus were probably also present in the last common ancestor of
oviraptorosaurs and troodontids (i.e., a non-avian maniraptoran). Open nests may have
appeared even earlier in theropod evolution but a large phylogenetic gap in the fossil record of
their eggs precludes a more precise determination (Fig 7). Nevertheless, our results reveal that
open nests first appeared in non-avian theropods well before the origin of Aves.

The evolutionary transition in nest types observed among non-avian theropods may also be
linked to changes in other nesting habits, such as brooding behavior and the arrangement of
eggs in the nest. A plausible scenario is that open nests and brooding behaviors evolved in

Fig 5. Comparison of the discriminant function between covered and open nesters in living and fossil
archosaurs. Horizontal bars inside boxes represent medians, lower and upper ends of boxes are the 25%
and 75% quartiles, respectively, and whiskers represent the smallest and largest cases. Outliers are
represented by dots and extremes by diamonds. Note that covered nesters show relatively lower values than
open nesters.

doi:10.1371/journal.pone.0142829.g005
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association because the transfer of body heat to the eggs would be effective only if the eggs were
exposed (at least partially) in the nest so as to be in contact with the parent (e.g., [5]). This
hypothesis is supported by the discovery of both oviraptorosaur and troodontid skeletons sit-
ting atop or in contact with the eggs [5,59,60,64,107], which suggests that these early open nest-
ers could have been brooders. Primitively, eggs laid in open nests may have been partially
buried in substrate or nesting material, as suggested by the taphonomy of troodontid and enan-
tiornithine bird clutches [8,108,109] and the multi-layered arrangement of oviraptorosaur
clutches [44]. It is only later in avian evolution, presumably among euornithine birds, that eggs
were left fully exposed in open nests, a condition observed in most extant brooding birds. Some
neornithine taxa (e.g., waders, grebes, some waterfowl, screamers, and tinamous), however,
likely secondarily evolved behaviors to partially bury their eggs during incubation [101,110],
for either thermoregulation or concealment purposes ([101,111]; Fig 7).

The evolution of open nests and brooding behavior may have played a key role in allowing
maniraptoran theropods, including birds, to exploit a greater diversity of locations for nesting.
Nest location for covered nesters (i.e., crocodylians and megapodes) is restricted to the ground
because heat and humidity is required from the nesting materials/substrate for incubation [4].
Conversely, reliance on body heat for egg incubation in fully open nesters probably freed man-
iraptorans to exploit new environments to build their nests (e.g., trees, cliffs, caves). Further-
more, this greater nesting freedom may have lessened the odds of nesting failure due to
predation, flooding, or torrential rainfall, factors commonly adversely affecting the hatching
success of covered nests on the ground (e.g., [4,112–114], and consequently may have played a
role in the evolutionary success and adaptive radiation of maniraptorans [115].

Fig 6. Inferred nest type for six extinct archosaurs as a function of Pagel's lambda values. Inferred nest type is generally consistent across all lambda
values, except for oviraptorosaurs where inferred nest type changes when the lambda value varies between 0.08 and 0.52, and for titanosaurs and
Lourinhanosaurus, which change to open nesters when lambda values approach one. The yellow line indicates the optimal lambda value (0.56).

doi:10.1371/journal.pone.0142829.g006
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Fig 7. Evolution of nest types among archosaurs. (A) Phylogeny of archosaurs with inferred nest types based on eggshell porosity and taphonomic
evidence. Covered nests are the primitive condition for dinosaurs; open nests and brooding behavior were present among non-avian maniraptoran theropods
but may have first appeared earlier. Although the eggs of early open nesters were still partially covered by substrate, open nests with fully exposed eggs
likely arose among Euornithes. (B) Phylogeny of Neornithes with inferred nest types based on eggshell porosity (Emeidae) and literature (other birds). Open
nests with fully exposed eggs are the primitive condition for modern birds, although secondary reversal to partial egg burial occurred independently in several
clades. Information for bird orders which include species that partially bury the eggs (Charadriiformes) or occasionally cover the eggs in open nests
(Accipitriformes, Anseriformes, Charadriiformes, Gruiformes, Passeriformes, Podicipediformes, Struthioniformes, Tinamiformes) was taken from [97–103].
Cladograms are based on [73,88,104–106].

doi:10.1371/journal.pone.0142829.g007
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