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Abstract

Prior studies of Mesozoic biodiversity document a diversity peak for dinosaur species in the Campanian stage of the Late
Cretaceous, yet have failed to provide explicit causal mechanisms. We provide evidence that a marked increase in North
American dinosaur biodiversity can be attributed to dynamic orogenic episodes within the Western Interior Basin (WIB).
Detailed fossil occurrences document an association between the shift from Sevier-style, latitudinally arrayed basins to
smaller Laramide-style, longitudinally arrayed basins and a well substantiated decreased geographic range/increased
taxonomic diversity of megaherbivorous dinosaur species. Dispersal-vicariance analysis demonstrates that the nearly
identical biogeographic histories of the megaherbivorous dinosaur clades Ceratopsidae and Hadrosauridae are attributable
to rapid diversification events within restricted basins and that isolation events are contemporaneous with known tectonic
activity in the region. SYMMETREE analysis indicates that megaherbivorous dinosaur clades exhibited significant variation in
diversification rates throughout the Late Cretaceous. Phylogenetic divergence estimates of fossil clades offer a new lower
boundary on Laramide surficial deformation that precedes estimates based on sedimentological data alone.
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Introduction

Studies of dinosaur diversification and distribution are generally

conducted from a global perspective [1–4] because poor strati-

graphic resolution within individual continents has thus far

prevented finer-scaled paleobiogeographical analyses. Yet, un-

derstanding the dynamics of dinosaurian evolution at the

intracontinental scale is required to identify correlative factors

that may have driven lineage diversification at more inclusive

levels.

Key studies [5,6] have established the Late Cretaceous Western

Interior Basin (WIB) of North America as the most detailed

chronostratigraphic framework available worldwide for fine-scale

intracontinental studies of dinosaur biostratigraphy and bio-

geography. To date, little work has been conducted investigating

fine-scale patterns of Laramidian dinosaur biodiversity at the

subclade level. Gates et al. [7] found that late Campanian (76–

74 Ma) North American dinosaur species exhibited a more

restricted geographic distribution than expected for vertebrates

of large-body size [8]. This result contrasts with the more

cosmopolitan biogeographic patterns of Maastrichtian dinosaurs

[9]. Similarly, global dinosaur diversity has been estimated as

higher during the Campanian relative to the Maastrichtian [10–

14], yet little substantial evidence has been presented documenting

potential causal factors for changing biodiversity patterns.

Among Late Cretaceous dinosaurs, the megaherbivorous

hadrosaurid (duck-billed) and ceratopsid (horned) dinosaur clades

provide exemplary case studies for examining macroevolutionary

patterns because these clades are the most species-rich and possess

refined phylogenetic relationships unparalleled in stratigraphic

and geographic controls [15–17].

Here, we test for factors associated with the Campanian

biodiversity surge within the WIB of North America–specifically

the effects of mountain uplift on megaherbivorous dinosaur net

diversification–within the most detailed biostratigraphic and

biogeographic framework yet compiled for megaherbivorous

dinosaurs.

Geological Context and Orogenic Speciation
During much of the Late Cretaceous, an epeiric intercontinen-

tal seaway (KWIS) inundated the central portion of North

America, splitting the landmass into two island continents,

Appalachia to the east and Laramidia to the west. Laramidia

was further bounded on the west by the Sevier Orogenic belt

(Fig. 1A). The Cretaceous–Neogene Laramide orogeny produced

the Rocky Mountains of western North America, which are major

physiographic features dictating modern climatic regimes and

biogeographic patterns in this region [18]. Uplift began when the

subducting Farallon tectonic plate shifted from a deeper to a more

shallow position. This shift ultimately moved tectonic stresses

further into the continental interior [19–21], leading to the uplift

of mountains east of the Sevier Orogenic Belt (Fig. 1B). During the

Late Cretaceous, inception of Laramide tectonics altered the
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topography of the WIB from an extensive foreland basin into

several smaller basins positioned east of the Sevier range and

caused regression of the KWIS from its position in the center of

North America at the close of the Campanian [22].

Varied techniques are utilized to date the onset of Laramide

uplift. Isotopic ages from metamorphic or volcanic rocks provide

a minimum time for the emplacement of uplifted structures

[23,24] and shifts in sedimentary basin drainage and subsidence

allow relative dating of changes in drainage basin profile and

source rock, which can be used to date emplacement of major

topological alterations [5,20,22,25–29]. However, geologic evi-

dence for uplift may be delayed relative to its earliest phases as

a result of weathering and eroding uplifted rock, shifting river

directions, and depositing subsequent sediments. Organismal

evolution offers an independent line of evidence for the

emplacement of major topographical features, which may prove

useful in refining the timing of events substantiated by the geologic

record. Refinement in the timing of uplift may be possible when

biological evidence is taken into account because species are

known to respond rapidly to environmental disturbance, with

documented genetic differences appearing on the scale of mere

decades [30].

Numerous studies have documented a relationship between

orogenic activity and speciation rate [31–37]. These studies range

from demonstrating changes associated with topographic com-

plexity, proximity to orogenic centers, and coincidence of

mountain uplift and phylogenetic patterns. For example, Miller

and Mao [32] proposed that diversity of Ordovician invertebrate

genera increased near orogenic centers. Peters [38] demonstrated

that the macroevolutionary history of marine animals is driven by

the creation and cessation of sedimentary basins regulated by

eustatic and tectonic controls. Also, Finarelli and Badgley [37]

showed that Miocene rodents occupying the Great Plains di-

versified at a slower rate than those living in the tectonically active

Basin and Range province.

Several additional studies have focused on using evolutionary

data to address the timing of orogenic events more specifically. For

instance, Antonelli et al. [39] used the diversification pattern of

South American coffee plants to corroborate geologic evidence of

multiple episodes of Andean uplift. Likewise, Che et al. [36] used

frog phylogenetics and environmental tolerance to time initial

uplift of the Himalayan Mountains.

Materials and Methods

Reconstruction of Ancestral Areas
Ancestral areas for the clades recovered in the ceratopsid [40]

and hadrosaurid [4] phylogenies were inferred via dispersal-

vicariance analysis (DIVA 1.1) [41] using the exact search

according to the optimization algorithm of Ronquist [42]. DIVA

is an event-based technique that integrates phylogenetic in-

formation with explicit models of the processes that shape the

distribution of taxa [43]. The program assumes allopatric

speciation due to vicariance as a null hypothesis; however, the

method also considers dispersal and extinction as alternative

processes influencing the resulting distribution of taxa. DIVA uses

a model in which vicariance, sympatric speciation, dispersal, and

extinction events are given different costs. These costs are inversely

related to the likelihood of occurrence of these events [44].

Specifically, vicariance (speciation due to emergence of a dispersal

barrier) and duplication (speciation within the same area) have

a cost of zero, whereas dispersal and extinction events have a cost

Figure 1. Paleogeographic maps of North America during the (A) late Campanian (,75 Ma) and (B) late Maastrichtian (,65 Ma). The
Sevier Orogenic Belt is the major mountain building system in western North America during the late Campanian, but note that by the latest
Maastrichtian the Laramide Orogeny creates uplift structures further to the east. Maps courtesy of Ron Blakey, Colorado Plateau Geosystems.
doi:10.1371/journal.pone.0042135.g001
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of one per each area unit added or deleted, respectively, from the

distribution [42]. DIVA uses parsimony as optimality criterion and

searches for the reconstruction that minimizes the number of

dispersal-extinction events (or cost) required to explain the

geographical distribution of terminal taxa [42]. This procedure

is accomplished via optimization of a three-dimensional cost

matrix, where the cost of an event depends on the combination of

the distributions of the sister taxa descended from a common

ancestor [42]. In order to allow for the possibility of widespread

ancestors, the number of ancestral areas optimized for a particular

node was left unrestricted. Node ages were derived from the

literature. We considered the following discrete general areas in

which these taxa have been recorded: Northern and Southern

WIB of North America, Eastern North America, South America,

Europe, and Asia.

Diversification Rates
The same phylogenetic trees utilized in DIVA were used to test

for statistically significant variations in diversification rates in

saurolophine hadrosaurids and chasmosaurine ceratopsids using

the program SYMMETREE version 1.0 [45]. This program

implements topology-based techniques that allow for detection of

significant variations in diversification among the lineages of

a given phylogeny. It does so by comparing the observed

topological distribution of the taxon diversity to the expectations

according to an equal-rates model [45]. Furthermore, SYMME-

TREE incorporates the topological distribution of the diversity the

taxa of the entire tree, as well as various tests that use information

on the relative diversity of the internal nodes of the phylogeny

[45].

Results and Discussion

Both hadrosaurids and ceratopsids demonstrate segregated

evolutionary centers between approximately 76.0–75.5 million

years, with subsequent integration of northern and southern

faunas later in the Campanian and early Maastrichtian. Time

calibrated phylogenies of these two groups provide compelling

evidence for a north-south isolation event at approximately 79–

78 Ma (Figs. 2 and 3). Additionally, whole tree statistics from

SYMMETREE analysis revealed that both saurolophines and

chasmosaurines show significant variation in diversification rates

(p = 4.161024) throughout the Late Cretaceous (SYMMETREE

Information S1). These results demonstrate dynamic rates of

evolution in megaherbivores within the Campanian and Maas-

trichtian that are likely attributable to changing environmental

factors.

Hadrosaurid Campanian Biogeography
Our DIVA analyses posit the most recent common ancestor of

saurolophine hadrosaurids as inhabiting the Northern WIB no

later than the early Campanian (Fig. 2). The occurrence of taxa

from the Edmontosaurus-Gryposaurus clade of saurolophines can be

explained by either vicariance of a widespread ancestor or

dispersal from the Northern WIB to the Southern WIB, no later

than the early Campanian. The major speciation events of North

American taxa within both the Prosaurolophus and Gryposaurus

subclades are unambiguously inferred to have been the result of

vicariance during Campanian times.

The occurrence of Acristavus gagslarsoni in virtually coeval

sediments (79.4, 79.3 Ma) from northwestern Montana and

southern Utah [46] and Gryposaurus notabilis in both southern

Alberta and southern Utah at approximately 76.5–76.0 Ma [17]

demonstrates widespread distribution of saurolophine hadro-

saurid dinosaurs throughout the early and middle Campanian

(Fig. 4). At approximately 75.5 Ma, the geographic distribution

of WIB hadrosaurids changes to one of localized species ranges.

In southern Utah, a new species of Gryposaurus–G. monumentensis–

appears in the fossil record [47], while at the same time in

Alberta the species Prosaurolophus maximus makes its first

appearance [15,48] (Fig. 4). These taxa are members of

geographically isolated sister clades (Fig. 2), suggesting they

diverged from a common ancestor and represent separate

evolutionary centers of diversification. No species of hadrosaurid

belonging to the northern Prosaurolophus clade is known from the

southern WIB until 71.5–71.0 Ma [49].

Specimens of the Lambeosaurinae clade of hadrosaurid

dinosaurs are much rarer in sediments older than 76 Ma but

a useful biogeographical pattern still is observable between 76–

73 Ma. The tube-crested lambeosaurine Parasaurolophus walkeri

makes a rare appearance in the Dinosaur Park Formation of

Alberta around 76 Ma, which occupies the lower megaherbivore

faunal zone with its crested cohort Corythosaurus casuarius

[15,48,50]. These two lambeosaurines resolve in separate clades

(Fig. 5). Other species closely related to C. casuarius are known from

the northern WIB until the mid-Maastrichtian [15,51,52], after

which lambeosaurine hadrosaurids apparently go extinct in North

America. To date, the only lambeosaurines known from the

southern portion of the WIB confidently ranging between 76–

73 Ma are Magnapaulia [52,53] and species of the genus

Parasaurolophus. An unidentified species of this genus has been

found within the Kaiparowits Formation dating from around

76 Ma [17]; P. cyrtocristatus is known from the Fruitland Formation

of northern New Mexico dated to approximately 74.5 Ma [54,55];

and finally P. tubicen is found in the Kirtland Formation of

northern New Mexico in sediments aged 73.5 Ma [56]. The

distributional pattern of Parasaurolophus could be easily achieved by

a widespread distribution of the genus prior to 76 million years as

concurrently observed in Saurolophinae taxa; however, no

specimens are currently known from this time in the southern

WIB to confirm this speculation.

Ceratopsid Campanian Biogeography
The subclade Chasmosaurinae has a broader known strati-

graphic range (from the late Campanian to the terminal

Maastrichtian) than its sister-clade Centrosaurinae [16] with

species known from the interval 76–65 Ma. The ancestral area

for Chasmosaurinae is posited through DIVA to be the Northern

WIB during the Early Campanian (Fig. 3). Subsequently,

a dispersal event into the Southern WIB led to a widespread

ancestor of the most exclusive clade including Mojoceratops. A

vicariance event occurring no later than the middle-late

Campanian resulted in the northern isolation of the Mojoceratops

lineage from the ancestor of the most exclusive clade including

Agujaceratops, in the Southern WIB, which is indicative of two

isolated evolutionary centers during the late Campanian [16,40].

The split of Kosmoceratops-Vagaceratops from the species-rich

Maastrichtian Anchiceratops-Triceratops clade is inferred to have

been the result of either a vicariance or dispersal event. Contrary

to the smaller geographic ranges exhibited by chasmosaurines in

the late Campanian, Maastrichtian species were wider ranging

(e.g., Triceratops horridus [57]).

Centrosaurine ceratopsids have dominantly been recovered

from sediments in Alberta and Montana, although a growing

body of fossil data from southern Utah is providing information

on the earliest Campanian stratigraphic distributions. Sampson

and Loewen [16] describe the phylogenetic, geographic, and

stratigraphic distribution of centrosaurines in detail; therefore,

Orogenic Megaherbivorous Dinosaur Radiation

PLoS ONE | www.plosone.org 3 August 2012 | Volume 7 | Issue 8 | e42135



only information relating to this study will be presented.

Centrosaurine taxa that occur in the early Campanian are

found throughout the WIB, yet they are not co-occurring, and

geographic distributions across large distances cannot be

ascertained. However, around 75.5 Ma a new species found

in the Kaiparowits Formation is contemporaneous with

Centrosaurus apertus in Alberta, although they are found in

separate clades. This illustrates another example of isolated

evolutionary centers at the same time as observed in

chasmosaurine ceratopsids and both clades of hadrosaurids.

The remainder of the centrosaurine data presented in Sampson

and Loewen [16] does not contribute further information to this

study.

Onset of the Laramide Orogeny and Dinosaur
Cladogenesis

Several recent studies have used the established connection

between phylogenetic relationships and tectonic activity to better

understand the relationship between evolutionary patterns,

changing geography, and onset of orogenic events [32,36–39].

Our analyses on biogeography and diversification rates in

megaherbivorous dinosaurs allow for independent testing of

hypotheses regarding the timing and influence of Laramide

tectonics.

Our combined analyses suggest that geographic and ecolog-

ical barriers created from incipient Laramide uplift, in

Figure 2. Saurolophine hadrosaurid phylogeny from Prieto-Márquez [49] with taxa time calibrated to known geologic occurrences.
Numbers in brackets indicate the midpoint of a geologic stage that a taxon is known to occur if that species does not have more constrained
stratigraphic ages. Symbols on phylogenetic branches designate the inheritance of geographic distribution based on results from the DIVA analyses.
doi:10.1371/journal.pone.0042135.g002
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combination with the presence of the Sevier Orogenic Belt and

the KWIS, caused initial isolation of northern and southern

dinosaurs that ultimately led to the establishment of geo-

graphically restricted evolutionary centers. Several predictive

tests of speciation via tectonic processes outlined by Badgley

[35] can be applied to test this hypothesis: 1) increased levels of

endemism should be present in regions affected by tectonic

speciation, 2) speciation rates should be greater in topograph-

Figure 3. Chasmosaurine ceratopsid phylogeny from Sampson et al. [40] with taxa time calibrated to known geologic occurrences.
Numbers in brackets indicate the midpoint of a geologic stage that a taxon is known to occur if that species does not have more constrained
stratigraphic ages. Symbols on phylogenetic branches designate the inheritance of geographic distribution based on results from the DIVA analyses.
Note that Torosaurus and Triceratops both appeared on the Sampson et al. [40] phylogeny used in this study; and that in light of recent work
documenting these taxa as congeneric [68], they remain as distinct genera within the present figure in order to maintain the original data integrity of
the Sampson et al. [40] study, but are considered and discussed here as solely Triceratops.
doi:10.1371/journal.pone.0042135.g003

Orogenic Megaherbivorous Dinosaur Radiation
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ically complex regions, and 3) correspondence should exist

between tectonic activity and cladogenesis.

Test 1: Tectonics and endemism. Our analyses demon-

strate that hadrosaurid and ceratopsid endemism increases in the

earliest stages of the Laramide uplift as defined by geologic

evidence. DIVA results (Fig. 3) provide the first rigorous support

for the hypothesis that chasmosaurine ceratopsids exhibited

widespread geographic distributions throughout the WIB during

the early Campanian [40]; additionally, this study is the first to

demonstrate that hadrosaurids are also widespread during the

early Campanian (Figs. 2 and 4). Subsequently (approximately

75.5 Ma), megaherbivore lineages exhibit more restricted ranges,

appearing to have been isolated to either Montana-Alberta

(Prosaurolophus, Chasmosaurus) or southern Utah (Gryposaurus mon-

umentensis, Kosmoceratops, Utahceratops ). Vicariance events during the

middle and late Campanian are also supported by ancestral area

reconstructions. Restricted endemism terminated during the

Maastrichtian when the KWIS retreated allowing taxa to roam

eastward and inhabit wider geographic ranges [9] (Figs. 2, 3, 4).

Development of more stringent climatic and ecologic regimes

may have played an important role in the isolation of hadrosaurid

and ceratopsid faunas in the late Campanian. Examples from the

modern record [58–60] indicate that ecosystems alter in compo-

sition along with subtle variations in elevation incited by orogenic

uplift. Although lower global temperature gradients may have

mitigated this effect in the Campanian to some degree, changing

topography in the WIB would undoubtedly have spurred changes

in ecosystem composition. As Late Cretaceous orogenesis com-

menced weather patterns that were previously dictated by Sevier-

induced topography would begin to change because of newly

introduced landforms, albeit small at first, which over time would

rise to significant heights. Profoundly, changes in elevation would

alter air currents and local climate regimes, which would have the

compounding effect of changing annual temperatures and rainfall

averages. Plant communities have been shown to be sensitive to

subtle changes in altitude, rainfall, and humidity [58,61,62] and

these conditions ultimately dictate local plant composition.

McLachlan et al. [63] found that trees migrate at a slower rate

than previously appreciated. Therefore, the climatic changes

periodically occurring as a result of orogenic uplift and basin

segregation may have occurred sufficiently fast enough to outpace

plants from crossing these barriers, and thereby altering

ecosystems substantially enough to create isolated biomes. This

hypothesis is supported by documented palynomorph evidence,

which indicates isolated pollen provinces that have long been

recognized in Late Cretaceous sediments [64]. Modified plant

communities may have acted in combination with potential

geographic barriers (such as the Castlegate river/delta system and

Wind River Mountains) to spur ecological barriers [65] to

herbivorous dinosaurs, preventing gene flow, and creating

endemic centers of megaherbivorous dinosaur evolution.

Test 2: Late cretaceous diversification

rates. SYMMETREE results clearly establish that hadrosaurids

and ceratopsids experienced significant variations in diversifica-

tion rates. If taxonomic diversity reflects net diversification rate,

there exists higher diversification for Campanian hadrosaurids

Figure 4. Saurolophine range distribution throughout the Western Interior Basin during the Campanian (lower grey area) and
Maastrichtian (upper white area). To the right, paleogeographic maps of North America during the late Campanian (,75 Ma) and late
Maastrichtian (,65 Ma). The sources for the geographic and stratigraphic position of the hadrosaurid species are as follows: Acristavus gagslarsoni
[46], Brachylophosaurus Canadensis [81], Edmontosaurus annectens and E. regalis [82], Gryposaurus latidens [83], G. monumentensis [47], G. notabilis
[15], Gryposaurus new species [84], Kritosaurus navajovius [85,86], Maiasaura peeblesorum [81], Prosaurolophus maximus [15,49], Sabinas OTU [4,49],
Saurolophus osborni [15,87], and UTEP OTU [49,88]. Maps courtesy of Ron Blakey, Colorado Plateau Geosystems.
doi:10.1371/journal.pone.0042135.g004
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and ceratopsids when compared to Maastrichtian rates. Our

data show that in a small window of the Campanian when

several topographic features (Sevier Orogenic Belt, KWIS, and

Laramide structures) coincided, new megaherbivorous dinosaur

species appeared at average rates of more than one species per

million years, as opposed to the Maastrichtian rates of one

species per several million years. If one compares the diversity

in hadrosaurids and ceratopsids only in two formations within

the northern region of the WIB, there is direct evidence of

seven hadrosaurid taxa [15,66] with additional ghost lineage

evidence of two taxa, and direct evidence of at least five

ceratopsids [16] found in the 1.5 Myr Dinosaur Park Formation

with additional ghost lineage [67] evidence of one taxon,

whereas evidence exists of only one hadrosaurid (Edmontosaurus

regalis) and up to three ceratopsids (Triceratops horridus, T. prorsus

and possibly Torosaurus latus) from the 1.37 Myr Hell Creek

Formation [68,69]. Even more dramatic is the evidence that

during the entire 5 million year Maastrichtian stage preserved

in the northern Western Interior Basin, there are only four

hadrosaurids documented [66,70] (Hypacrosaurus altispinus, Saur-

olophus osborni, Edmontosaurus annectens, and E. regalis) with no

ghost lineage additions, and three to five ceratopsids [16,68,71]

(Eotriceratops, Nedoceratops, Torosaurus latus Triceratops prorsus, and T.

horridus), with up to five ghost lineage taxa. These data are not

biased on sampling due to nearly 150 years of prospecting in

both time periods, and greater outcrop area of the Maas-

trichtian strata. Additionally, Campione and Evans [70] found

a plausible Maastrichtian drop in megaherbivore diversity based

on morphological disparity. Therefore, net diversification rates

slowed in correspondence with an increase in habitable land, as

predicted.

Test 3: Tectonic correspondence. The phylogenetic and

geographic range data for megaherbivorous dinosaurs support the

hypothesis that the thrust of clade diversification is contempora-

neous with the establishment of Laramide uplift between southern

Alberta and southern Utah approximately 75 Ma. More specif-

ically, the Wind River Mountains of southern Wyoming started

cooling between 85–75 Ma [23], and the Big Horn Mountains

began cooling as early as 70 Ma [24]. The Rock Springs and

Douglas Creek uplift initiated simultaneously in the Campanian

[72]. Uplift of the Colorado Plateau reached two peaks of

maximum ascension rate at approximately 80 Ma and 70 Ma

[73]. Several drainage basins in southern Utah that date to

approximately 74.5 Ma show increased subsidence rates and

changes to flow direction hypothesized to be part of the Laramide

uplift [28,29]. The Castlegate river delta system deposited as

a result of uplift of the Charleston-Nebo salient in the early

Campanian [74] (,77 Ma). Together, these data firmly establish

a correspondence between the main thrust of dinosaur cladogen-

esis as documented by fossil evidence and establishment of

incipient Laramide tectonic structures as evidenced by the geologic

record. However, our phylogenetic analyses time the initial

divergence of Chasmosaurus and Pentaceratops clade ceratopsids and

Gryposaurus and Prosaurolophus clade hadrosaurids at approximately

78.5 Ma, suggesting that topographical surficial deformation

caused by the Laramide orogeny may have been present in the

Figure 5. Time calibrated phylogeny of lambeosaurine hadrosaurids. Data from Prieto-Márquez et al. [52].
doi:10.1371/journal.pone.0042135.g005
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early Campanian. This date precedes estimates based on sub-

stantial sedimentological evidence and, if plausible, provides the

earliest evidence for the Laramide orogeny north of Arizona/New

Mexico [75–78].

Conclusion
We provide quantitative evidence that rapid cladogenesis of

Campanian megaherbivores occurred coincidentally with incipi-

ent confluence of the Sevier Orogenic Belt, KWIS, and Laramide

tectonics, and that once the Laramide uplift was substantial

enough to drive regression of the KWIS during the Maastrichtian,

net diversification rates followed suit. Phylogenetic divergence

estimates of fossil clades offer a new lower boundary on Laramide

surficial deformation that precedes estimates based on sedimen-

tological data alone.

Application of these results to other dinosaur groups contem-

poraneously living in Laramidia is an interesting prospect. The

major hurdle to such comparative studies is insufficient fossil

records of other clades, although based on limited data theropods

may exhibit similar trends. Different species of tyrannosaurid and

troodontid are known to live within the northern and southern

WIB approximately 75.5 Ma [79,80]. Once established, compar-

ison of the trends observed within ceratopsids and hadrosaurids in

response to the unique geologic and topographic conditions

spotlighted in this study to those trends observed in other dinosaur

clades will allow insights into the tempo and modes of evolutionary

change among the dominant terrestrial vertebrates of the

Cretaceous.
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