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ABSTRACT
Direct evidence of paleoecological processes is often rare when the fossil record is poor,
as in the case of the Cretaceous of eastern North America. Here, I describe a femur
and partial tibia shaft assignable to theropods from two Late Cretaceous sites in New
Jersey. The former, identifiable as the femur of a large ornithomimosaur, bears several
scores interpreted as shark feeding traces. The tibia shaft has punctures and flaked
bone from the bites of mid-sized crocodyliforms, the first documented occurrence of
crocodyliform traces on dinosaur bone from the Maastrichtian of the Atlantic Coastal
Plain. The surface of the partial tibia is also littered with indentations interpreted as the
traces of invertebrates, revealing a microcosm of biological interaction on the coastal
seafloor of the Cretaceous Atlantic Ocean.Massive crocodyliforms, such asDeinosuchus
rugosus and the slightly smallerDeltasuchus motherali, maintained the role of terrestrial
vertebrate taphonomic process drivers in easternNorth America during the Cretaceous.
The report of crocodyliform bite marks on the ornithomimosaur tibia shaft in this
manuscript reinforces the importance of the role of crocodyliforms in the modification
of terrestrial vertebrate remains during the Cretaceous inNorth America. The preserved
invertebrate traces add to the sparse record of the presence of barnacles and other
marine invertebrates on dinosaur bone, and the evidence of shark feeding on the
ornithomimosaur femur support the ‘‘bloat-and-float’’ model of terrestrial vertebrate
fossil deposition in marine deposits from the Cretaceous of eastern North America.

Subjects Ecology, Paleontology
Keywords Taphonomy, Cretaceous, Dinosaurs, Appalachia, Theropods, Crocodyliforms

INTRODUCTION
Crocodyliform bite marks on vertebrate remains are well-represented throughout the
Mesozoic and Cenozoic and have been extensively described (e.g., Carpenter & Lindsey,
1980; Binford, 1981; Erickson, 1984; Davidson & Soloman, 1990; Schwimmer, 2002; Forrest,
2003; Fuentes, 2003; Cisneros, 2005; Milukas et al., 2006; Njau & Blumenschine, 2006;
Schwimmer, 2010; Noto, Main & Drumheller, 2012; Boyd, Drumheller & Gates, 2013;
Martin, 2013; Drumheller & Brochu, 2014; Drumheller & Brochu, 2016; Njau & Gilbert,
2016). Despite a poor fossil record, one pattern that has emerged in the study of the
paleoecology of eastern North America during the Cretaceous is the frequency of vertebrate
remains—especially those of turtles and dinosaurs—that show evidence of feeding by

How to cite this article Brownstein (2018), Trace fossils on dinosaur bones reveal ecosystem dynamics along the coast of eastern North
America during the latest Cretaceous. PeerJ 6:e4973; DOI 10.7717/peerj.4973

https://peerj.com
mailto:\unskip \penalty -\@M chasethedinosaur@gmail.com
mailto:\unskip \penalty -\@M chasethedinosaur@gmail.com
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.4973
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.7717/peerj.4973


crocodyliforms. Such marks have been documented in fossils from the Cenomanian
Woodbine Formation of Texas and attributed to the bites of individuals of the taxon
Deltasuchus motherali (Noto, Main & Drumheller, 2012; Adams, Noto & Drumheller, 2017).
In the Campanian, evidence of crocodyliform feeding on dinosaurs and turtles from
multiple geological units in the southeastern United States and from the Marshalltown
Formation of New Jersey have been attributed to the massive crocodylian Deinosuchus
rugosus, a species populous along the eastern North American coastline during that
time (e.g., Schwimmer et al., 1993; Gallagher, 1995; Schwimmer, 1997; Schwimmer, 2002;
Schwimmer, 2010; Schwimmer et al., 2015). However, no record of large crocodyliform bite
marks on dinosaur material has been reported from the Maastrichtian of eastern North
America, when Deinosuchus disappears from the fossil record (Schwimmer, 2002). In the
Maastrichtian of theAtlantic Coastal Plain, crocodyliforms are represented by various forms
smaller than D. rugosus, including Borealosuchus threeensis, Thoracosaurus neocesariensis,
Hyposaurus rogersii, and Elosuchus minor (De Kay, 1842; Carpenter, 1983; Parris, 1986;
Gallagher, 1993; Brochu, 2006; Brochu et al., 2012). Among these, Borealosuchus threeensis
and Thoracosaurus neocesariensis seem to have grown the largest; individuals of the both
taxa achieved sizes of 5 or more meters, and one Thoracosaurus specimenmay have reached
7–8 m in length (e.g., Schwimmer, 2002; Brochu et al., 2012).

Like crocodyliform feeding traces, shark feeding traces are also extensively documented
in the literature (Everhart, Everhart & Shimada, 1995; Schwimmer, 1997; Everhart, 1999;
Shimada & Everhart, 2004; Shimada & Hooks, 2004; Everhart & Ewell, 2006; Boessenecker
& Perry, 2011; Schein & Poole, 2014; Hill et al., 2015). Traces on dinosaur bones from
sharks are predictably common the Campanian and Maastrichtian of eastern North
America, owing to the preservation of non-avian dinosaurs from eastern North America
in marine strata. Such finds include the heavily shark-bitten partial femur of a diminutive
adult hadrosaurid from the Hornerstown Formation (Schein & Poole, 2014) and other
remains of hadrosaurids, nodosaurids, and tyrannosauroids with characteristic scores
(e.g., Carpenter, Dilkes & Weishampel, 1995; Schwimmer, 1997; Schwimmer, Stewart &
Williams, 1997; Everhart & Ewell, 2006; Brownstein, 2017). Some of these occurrences of
shark feeding traces on dinosaur bonesmay have been caused by individuals of themedium-
sized species Cretolamna appendiculata, and there is direct evidence (embedded teeth) to
show that Squalicorax kaupi occasionally scavenged dinosaur bone (e.g., Schwimmer, 1997;
Schwimmer, Stewart & Williams, 1997; Schein & Poole, 2014). These shark feeding traces
on dinosaur bones have been noted in the study of eastern North American dinosaur
taphonomy to support the prevalence of the ‘‘bloat and float’’ hypothesis in eastern North
American dinosaur preservation (Langston, 1960; Bryan et al., 1991; Schwimmer, 1997;
Schwimmer, 2002), whereby dinosaur carcasses washed out to sea, remained buoyant in
the water due to an internal buildup of gas, and slowly lost body parts that would become
fossilized on the sea floor.

Invertebrate traces on dinosaur bones are somewhat uncommon, though insect
traces on bones deposited in inland settings have been extensively described in the
literature (e.g., Rogers, 1992; Hasiotis, Fiorillo & Hanna, 1999; Paik, 2000; West & Martin,
2002; Hasiotis, 2004; Kirkland & Bader, 2010; Roberts, Rogers & Foreman, 2007; West &
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Hasiotis, 2007; Bader, Hasiotis & Martin, 2009; Xing et al., 2016). These vary inmorphology
(e.g., Bader, Hasiotis & Martin, 2009; Xing et al., 2016) and have been shown as important
indicators of the taphonomy of the bones on which they lie (e.g., Martin & West, 1995;
Hasiotis, Fiorillo & Hanna, 1999; West & Hasiotis, 2007; Bader, Hasiotis & Martin, 2009).

A variety of Mesozoic-age invertebrate traces on terrestrial and marine vertebrates,
including those of the polychaeteOsedax and associations of pelycopods,molluscs, have also
been described (e.g., Martill, 1987; Grange & Benton, 1996; Maier, 2003; Kaim et al., 2008;
Buckeridge, 2011; Danise & Higgs, 2015). Additional occurrences of invertebrate traces on
marine vertebrates include records on mammal and penguin bones (e.g., Frenguelli, 1928;
Deméré & Cerutti, 1982; Kues, 1983; Donovan, 1988; Cigala-Fulgosi, 1990; Emslie et al.,
1996;Hulbert et al., 1998;Hoyle et al., 2004;Cione et al., 2010;Kiel et al., 2010; Boessenecker,
2013; Boessenecker & Fordyce, 2015). In the Maastrichtian of the Atlantic Coastal Plain,
invertebrate borings are common on the fossil shells of the bivalves Exogyra costata
and Pycnodonte mutabilis and are attributed to the sponge Cliona cretacica (e.g., Fenton
& Fenton, 1932). Marine invertebrate traces on vertebrate bones have allowed for the
reconstruction of poorly-known Mesozoic benthic ecosystems and the origin of modern
oceanic deadfall flora and fauna (e.g., Danise & Higgs, 2015).

Here, I describe two theropod dinosaur bones from the Maastrichtian of New Jersey.
One is a partial tibia shaft, the other the distal end of a femur. The partial femur is
assignable to an as-yet-unrecognized large ornithomimosaur of similar size to the Asian
taxon Gallimimus and an unnamed animal from the Campanian Dinosaur Park Formation
of Alberta (Longrich, 2008). Both New Jersey specimens showmarks attributable to feeding,
the tibia shaft bearing ones from crocodyliforms and the femur from sharks, allowing for
insight into the faunal composition and paleoecology of Maastrichtian communities along
the coast of the Cretaceous Atlantic Ocean (Fiorillo, 1991; Gallagher, 1995; Schwimmer,
1997; Chure, Fiorillo & Jacobsen, 1998; Schwimmer, 2002; Rogers, Krause & Rogers, 2003;
Jennings & Hasiotis, 2006;Reisz & Tsuji, 2006; Schwimmer, 2010;Noto, Main & Drumheller,
2012; Main, Noto & Weishampel, 2014; Adams, Noto & Drumheller, 2017). At least two
morphotypes of invertebrate traces are also present on the dinosaur tibia, including those
tentatively identified as barnacle scars that represent, to the author’s knowledge, only the
second occurrence of these encrusting organisms on non-avian dinosaur bone (Maier,
2003; Boessenecker, 2013).

MATERIALS & METHODS
Permits
No permits were needed for this study, and access to the collections of the PeabodyMuseum
of Natural History was provided by Daniel Brinkman.

Geological Setting
In the 1970s, two partial theropod hindlimb bones were recovered from two Cretaceous-
age sites in New Jersey by Gerard R. Case and Ralph O. Johnson. The tibia shaft portion
YPM VPPU.021825 was collected from Maastrichtian deposits at the Big Brook site in
Monmouth County, New Jersey. There has been some debate as to the exact provenance
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of the majority of the fossils from this locality that are eroded from sediments along the
riverbanks (e.g., Lauginiger, 1986; Becker & Chamberlain, 2001; Gallagher et al., 2014), but
recent studies have found that most specimens of Late Cretaceous dinosaurs from the
site are from the early to mid-Maastrichtian Navesink Formation (e.g., Miller et al., 2004;
Brusatte et al., 2012). The partial distal femur YMP VPPU.022361 was recovered from the
Navesink Formation at Hop Brook near Holmdel, New Jersey (Baird, 1986).

The environment represented by the Navesink Formation (69–67 Ma; Miller et al.,
2004) at Big Brook is marine in origin, representing a transgression of the Atlantic Ocean
(e.g., Gallagher, Parris & Spamer, 1986; Lauginiger, 1986; Gallagher, 1993; Weishampel
& Young, 1996; Miller et al., 2004; Parris, Grandstaff & Gallagher, 2004). The Navesink
Formation at Big Brook represents the deepest, most saline environment at the locality
and is highly fossiliferous at some intervals (Gallagher, Parris & Spamer, 1986). Terrestrial
vertebrate fossils from the site include the worn bones of lambeosaurines and indeterminate
hadrosaurids, nodosaurids, tyrannosauroids, and ornithomimosaurs (e.g., Gallagher,
Parris & Spamer, 1986; Gallagher, 1993; Weishampel & Young, 1996; Brusatte et al., 2012).
The marine vertebrate fauna is extensive and includes the crocodyliform Thoracosaurus,
several different species of turtles and mosasaurs, and a menagerie of chondrichthyan
and osteichthyan taxa (e.g., Gallagher, Parris & Spamer, 1986; Lauginiger, 1986; Gallagher,
1993).

Identification and documentation of traces
The surfaces of both bones were extensively searched for fossil traces. Artifacts of
preparation were carefully identified and excluded. The presence of any preparation
artifacts potentially interpretable as trace fossils is unlikely, as both YPMVPPU.021825 and
YPM VPPU.022361 were collected from the surface after being eroded out of Cretaceous
exposures on the banks of Big Brook and Hop Brook. Probable traces were reviewed,
photographed, and measured using digital calipers. The width of each trace was taken
along each’s midway, with length measured along greatest axis of each bone.

The nomenclature of Binford (1981) was used for the vertebrate traces described herein.
Crocodyliform traces were identified based on the criteria of Njau & Blumenschine (2006)
and through comparisons with other descriptions of fossil crocodyliform feeding traces
in the literature. Shark feeding traces on the described femur were identified based
on their identical nature to the arced scores on vertebrate bones identified as shark
traces in previous studies (e.g., Everhart, Everhart & Shimada, 1995; Schwimmer, 1997;
Everhart, 1999; Shimada & Everhart, 2004; Shimada & Hooks, 2004; Everhart & Ewell,
2006; Boessenecker & Perry, 2011; Schein & Poole, 2014; Hill et al., 2015). Traces referred
to invertebrates are called ‘‘small biological traces’’ in the descriptive section of this
manuscript and referred to specific clades in the Discussion section based on comparisons
with other marine invertebrate traces on vertebrate bones documented from the fossil
record (e.g., Frenguelli, 1928; Deméré & Cerutti, 1982; Kues, 1983; Donovan, 1988; Cigala-
Fulgosi, 1990; Emslie et al., 1996; Hulbert et al., 1998; Hoyle et al., 2004; Cione et al., 2010;
Kiel et al., 2010; Boessenecker, 2013; Boessenecker & Fordyce, 2015).
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SYSTEMATIC PALEONTOLOGY

Dinosauria Owen (1842) sensu Padian & May (1993)
TheropodaMarsh (1881) sensu Gauthier (1986)
Theropoda indet.

Material: YPM VPPU.021825, partial tibia shaft.
Referral: The tibia may be attributed to a theropod based on its hollow interior.
Description: YPM VPPU.021825 (Figs. 1A–1E) is the partial tibia shaft of a large theropod
dinosaur (e.g., Baird, 1986; Gallagher, 1993). The bone still preserves a poorly developed
articular surface for the fibula on its medial surface that is bordered by two slight,
proximodistally-running ridges. The bone is straightened and, in cross-sectional view,
has a greater dorsoventral than mediolateral width. In size, the tibia shaft compares most
favorably with ornithomimosaur and tyrannosaur specimens collected from the Atlantic
Coastal Plain, and thus it is likely the bone came from one of these two groups of theropod
dinosaur. Measurements of this specimen may be found in Table 1.

Dinosauria Owen (1842) sensu Padian & May (1993)
TheropodaMarsh (1881) sensu Gauthier (1986)
Coelurosauria Von Huene (1914) sensu Sereno, McAllister & Brusatte (2005)
Ornithomimosauria (Barsbold, 1976) sensu Choiniere, Forster & De Klerk (2012)
Ornithomimosauria indet.

Material: YPM VPPU.022361, partial distal left femur.
Referral: The femur may be tentatively assigned to Ornithomimosauria based on a
combination of morphological features, as it was too incomplete to be included in
a phylogenetic analysis. YPM VPPU.022361 is assigned to Ornithomimosauria based
sharing with femora from taxa of this clade its (1) elongate nature, which was originally
used by Baird (1986) for this assignment, (2) the presence of a thin crest extending
proximally from the distal medial condyle, and (3) heavily separated distal condyles (e.g.,
Makovicky, Kobayashi & Currie, 2004). Besides ornithomimosaurs, only dromaeosaurids
and tyrannosauroids are known from the Campanian-Maastrichtian of Appalachia (e.g.,
Baird & Horner, 1979; Gallagher, 1993;Weishampel & Young, 1996; Kiernan & Schwimmer,
2004; Carr, Williamson & Schwimmer, 2005; Brusatte, Benson & Norell, 2011; Brusatte et
al., 2012; Schwimmer et al., 2015). All described dromaeosaurids from Appalachia are
smaller than the theropod to which the YPM specimen described herein belongs (Kiernan
& Schwimmer, 2004; Schwimmer et al., 2015), and dromaeosaurids of similar size to the
dinosaur that the Big Brook femur represents have more robustly built femora with
only slightly separated distal condyles and without a distal medial ridge (e.g., Norell &
Makovicky, 2004). The femur is also differentiated from tyrannosauroids like Dryptosaurus
and Appalachiosaurus based on the features noted above (fig. 16A–D in Carr, Williamson
& Schwimmer (2005); fig. 15 in Brusatte, Benson & Norell, (2011)).
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Figure 1 Partial tibia shaft with crocodyliform feeding marks and invertebrate traces. YPM
VPPU.021825 in lateral (A), medial (B), and proximal (C) views, with closeups of crocodyliform feeding
marks and possible invertebrate burrows on the lateral (D) and medial (E–I) faces of the bone. Scale bar
= 50 mm (A–C), 5 mm (D–I). Black arrows indicate crocodyliform feeding marks; yellow arrows indicate
possible invertebrate traces. Abbreviations: bp, bisected puncture; bs, barnacle scar; fb, flaked bone; jp,
jagged puncture; tt, tubular traces.

Full-size DOI: 10.7717/peerj.4973/fig-1
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Table 1 Measurements of theropod bones.

Specimen Proximodistal
length

Distal
mediolateral
width

Distal
dorsoventral
width

Circumference
at midshaft

Reference

YPM
VPPU.021825

222 mm n/a n/a 152 mm this paper

YPM
VPPU.022361

290 mm 75 mm 59 mm 149 mm Baird (1986),
this paper

Description: YPM VPPU.022361 (Figs. 2A–2F) is the distal femur of a large
ornithomimosaur. The specimen is of comparable size to the femora of Gallimimus
(Table 1; Osmólska, Roniewicz & Barsbold, 1972; Baird, 1986) and is hollow. Portions of
both the lateral and medial distal femoral condyles are preserved and are separated by
a prominent intercondylar groove. On the medial surface of the medial distal condyle,
a ridge originates that extends proximodorsally. The femur is slightly divergent dorsally
towards its distal end in medial and lateral views. Muscle attachment scars are present on
the preserved portion of the lateral surface of the bone.

Remarks on the traces present on the theropod limb bones
YPM VPPU.021825: The lateral surface of the bone preserves four jagged punctures,
including three that are adjacent to each other and may represent a single biting event
based on their similar size, closely adjacent nature, and placement matching the curved
mesial end of the tooth row of a squarish skull (Fig. 1D). Of these serial bite marks, the
distal is the largest and most rounded, with the jagged punctures proximal to the largest
one curving towards the dorsal surface. This indicates that the serial bite marks were
left by mesial dentition corresponding to the curvature of the anterior end of a squarish
vertebrate jaw. Distal to all these punctures on the bone, a single jagged pit is also present.
These punctures penetrate appreciably into the bone surface, and their measurements are
catalogued in Table 2.

On the medial surface of YPM VPPU.021825, four punctures are preserved (Figs. 2B,
2E). One of these is a jagged puncture, proximally adjacent to the edge of a major area of
flaked bone and laterally and dorsally tomajor breaks in the bone surface (Figs. 1B, 2E). The
largest, an elongate, deepened bisected puncture, sits within the distal portion of smaller
area of spalled bone (Figs. 1B, 2E). Two other jagged punctures appear along the borders
of major areas of bone flaking on the medial and ventral ends of the tibia shaft (Fig. 1E).
Because these areas of bone flaking are adjacent to these punctures, they likely were created
by the same biting events (e.g., Njau & Blumenschine, 2006; Njau & Blumenschine, 2012;
Drumheller & Brochu, 2014; Njau & Gilbert, 2016; Drumheller & Brochu, 2016). Along with
those from the punctures on the lateral surface, measurements of those present on the
medial surface are catalogued in Table 2.

The medial surface of the partial tibia shaft YPM VPPU.021825 is littered with two
morphotypes of rounded, nearly radially and bilaterally symmetrically outlined shapes
interpreted as biological traces. These shapes are unlike those expected from artifacts
of erosion, which would be comparatively jagged and appear as heavy abrasions, rather
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Figure 2 Distal ornithomimosaur femur with shark feeding scores. YPM VPPU.022361 in lateral (A),
medial (B), dorsal (C) ventral (D), and distal (E) views. Scale bar= 5 mm. Black arrows indicate shark
feeding scores.

Full-size DOI: 10.7717/peerj.4973/fig-2
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Table 2 Measurements of crocodyliform and shark feeding traces.

Bite mark Length Width

Proximalmost lateral (YPM VPPU.021825) 3 mm 1 mm
Second proximalmost lateral (YPM VPPU.021825) 4 mm 3 mm
Second distalmost lateral (YPM VPPU.021825) 5 mm 4 mm
Distalmost lateral (YPM VPPU.021825) 4 mm 3 mm
Bisected medial (YPM VPPU.021825) 10 mm 6.5 mm
Larger jagged medial (YPM VPPU.021825) 6 mm 5 mm
Smaller jagged medial (YPM VPPU.021825) ? 6 mm
Jagged ventral (YPM VPPU.021825) ? 5 mm
Proximalmost (YPM VPPU.022361) 9 mm 1 mm
Second proximalmost (YPM VPPU.022361) 6 mm 1 mm
Middle (YPM VPPU.022361) 5 mm 0.5 mm
Distalmost (YPM VPPU.022361) 4 mm 1 mm

than small, detailed stains and indentations, on the bones. The majority of these inferred
biological traces on the surface of this bone appear as tubular indentations that are oriented
sub-parallel to the longitudinal axis of the bone and do not extend past the cortical bone
layer.

One morphotype of small biological trace (Fig. 2E) appears as elongate, ovoid to circular
traces that are heavily clustered (n> 40) between to the large bone flake on the medial
surface of the tibia and the bone flake on the ventral surface of the bone. These are very
shallow traces that penetrate slightly more into the bone than the larger ovoid small
biological traces described below. The longest of these traces is approximately 2 mm long
and 0.20 mm wide, whereas the smallest is less than 0.1 mm long.

Another morphotype of trace appears as circular shapes that forms stains or extremely
shallow depressions present across the medial surface of the tibia shaft (Figs. 1E–1G). These
stains are considerably darker than the outside bone surface and are identified as biological
traces based on their highly circular shape. Several of these traces are present on the medial
surface of the bone, three of which are present as stains sitting within the flaked bone
associated with the punctures described above. A number of these circular traces are also
present as shallow depressions on the distal end of the bone, whereas only one is located
near the diaphysis of the partial tibia shaft (Figs. 1F–1G). The majority of these traces are
approximately 4 mm in diameter.
YPM VPPU.023361: At least four gently arched scores are present on the distal
ornithomimosaur femur YPM VPPU.023361 (Fig. 2C). None of these scores are paired
and each clearly came from only one tooth cusp, none bear serration striations, and all
are deepened, varying slightly in width at their midpoints. The scores are concentrated on
the ventral surface of the distal femur YPM VPPU.023361, although several scrapes on the
lateral and dorsal surfaces may also be feeding traces. Measurements of these marks may
be found in Table 2.
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DISCUSSION
Assignment of traces on the described bones to specific clades
The possibilities that the large, deepened punctures and major patches of bone spalling
on the theropod tibia YPM VPPU.021825 are those of theropod dinosaurs, mammals,
plesiosaurs, or mosasaurs, which are all represented in the Navesink (e.g., Gallagher, 1993),
are rejected based on several lines of evidence. Firstly, these bite marks were by an organism
that may have possessed unserrated teeth due to the lack of corresponding striations near
or within any of the punctures. Secondly, the deepened, extensive nature of the punctures
and spalled bone are consistent with the trace maker possessing a powerful bite and
possessing incrassate, rather than ziphodont, dentition. This first observation suggests
against theropod dinosaurs being the inflictors of the marks, whose serrated teeth often
leave striations on bone (e.g., Fiorillo, 1991; Horner & Lessem, 1993; Erickson & Olson,
1996; Carpenter, 1998; Chure, Fiorillo & Jacobsen, 1998; Jacobsen, 2001; Hyslop & Boyd,
2004; Fowler & Sullivan, 2006; Longrich & Ryan, 2010; Noto, Main & Drumheller, 2012;
De Valais, Apesteguía & Garrido, 2012; Xing et al., 2012; Boyd, Drumheller & Gates, 2013;
Hone & Tanke, 2015), and the second eliminates the Maastrichtian theropod dinosaurs
present in the Atlantic Coastal Plain that were large enough to produce the marks on YPM
VPPU.021825, tyrannosauroids, as Appalachian tyrannosauroids had heavily ziphodont,
serrated teeth and relatively lightly built skulls (e.g., Brusatte, Benson & Norell, 2011). These
teeth, even if contact with the bone surface was achieved along their apical end, would not
produce the large, deep, rounded punctures present on the partial theropod limb shaft.

Mammals are also eliminated as agents of the punctures and flaking on YPM
VPPU.021825. Firstly, the size of the animal that YPM VPPU.021825 represents is clearly
much larger than non-avian dinosaurs that preserve evidence of mammalian feeding on
their bones (e.g., Hu et al., 2005). Secondly, the bisected pit on the ventral surface of the
tibia shaft is inconsistent with a mammalian feeding trace (e.g., Njau & Blumenschine,
2006; Boyd, Drumheller & Gates, 2013; Njau & Gilbert, 2016).

These marks are also incongruent with the traces of mosasaur bites, which are deepened
and often linear in shape (e.g., Bell & Martin, 1995; Lingham-Soliar, 1998; Lingham-Soliar,
2004; Everhart, 2008; Einarsson et al., 2010). The serial bite marks present on the lateral
surface of the bone suggest a squarish built for the mesial end of the jaw of the trace
maker, which conflicts with the triangular morphology of the mesial end of the skull
of mosasaurs (Everhart, 2008). The presence of the bisected pit and associated extensive
bone flaking on the lateral surface of YPM VPPU.021825 are unlike the condition seen in
mosasaur bites, where localized, heavily deepened gouges and circular punctures indicate
the sharpened, rather than blunt, nature of the apical end of the teeth (e.g., Schwimmer,
2010). Only globidensine mosasaurs are known to have possessed apically blunt teeth
(Schwimmer, 2010). However, these mosasaurs had weaker bite forces than eusuchian
crocodyliforms and other taxa that could inflict the extensive bone damage seen on the
tibia shaft, which precludes the identification of these large marine squamates as the trace
makers (Schwimmer, 2002; Schwimmer, 2010). Plesiosauroid feeding traces are shallow,
linear scrapes that lend to the comparatively weak bite forces of these marine reptiles (e.g.,

Brownstein (2018), PeerJ, DOI 10.7717/peerj.4973 10/23

https://peerj.com
http://dx.doi.org/10.7717/peerj.4973


Martin, Rothschild & Burnham, 2016). The slender teeth of plesiosaurs also do not match
with the large, rounded marks seen on the tibia and could not have inflicted them, let alone
the extensive bone flaking on the tibia that likely occurred under high stress. Although
pliosauroid plesiosaurs are known to have inflicted catastrophic bone damage to prey (e.g.,
Thulborn & Turner, 1993), this group is only known to have survived into the Turonian
in North America (Schumacher, Carpenter & Everhart, 2013). The bisected pit on the tibia,
which is diagnostic of crocodyliform bites (Njau & Blumenschine, 2006), also precludes
referral of the punctures and flaking to bites from these marine reptile groups.

The punctures and areas of flaked bone on YPM VPPU.021825 satisfy three of the five
criteria of Njau & Blumenschine (2006) for the identification of crocodyliform bite marks:
the rarity of crocodyliform bite marks in the assemblage (only the metatarsal described
herein has been noted as possessing such punctures out of the dozens of dinosaur specimens
collected from Big Brook; Gallagher, 1993; C Brownstein, pers. obs., 2017), the presence
of bisected punctures, and the lack of evidence for gnawing on the bone. Additionally,
the marks may satisfy the criterion of Njau & Blumenschine (2006) for crocodyliform bite
mark identification that the marks are populous on bones useful for leverage, though
not enough are present on the preserved portion of the tibia to definitively state so. The
fragmentary nature of YPM VPPU.021825 is interpreted as a taphonomic relic from
erosion and deposition at sea rather than an indication of the type of organism that left the
punctures and flaking on its surface (e.g., Njau & Blumenschine, 2006; Boyd, Drumheller
& Gates, 2013), as other theropod bones from the Atlantic Coastal Plain bearing feeding
traces clearly attributable to large crocodyliforms are also fragmentary limb shafts (e.g.,
Schwimmer, 2002; Schwimmer, 2010).

Although the puncturemarks bear resemblance to the punctures described asNihilichnus
nihilichnus by Milukas et al. (2006) and Late Cretaceous-age traces referred to this
ichnotaxon by Jacobsen & Bromley (2009), assignment of the traces described herein
to this taxon is not effected herein. Specific assignment is not made in the context of
previous studies of crocodyliform traces on dinosaur bones, which have made efforts to
identify the crocodyliform morphotypes or taxa that made such traces but did not assign
to specific ichnotaxa the traces themselves (e.g., Schwimmer, 2002; Rivera-Sylva, Frey &
Guzmán-Gutiérrez, 2009; Schwimmer, 2010; Boyd, Drumheller & Gates, 2013).

Only one crocodyliform has been reported from the Navesink Formation: Thoracosaurus
neocesariensis (De Kay, 1842; Gallagher, 1993; Schwimmer, 2002). At least one known
specimen of this taxon reached a length of ∼7–8 m (Schwimmer, 2002). However, the
deepened punctures and extensive bone spalling on the metatarsal YPM VPPU.021825
are inconsistent with the morphology of the conical, elongate, slightly hooked teeth of
Thoracosaurus (e.g., Brochu, 2004). As the Navesink Formation represents the deepest
marine environment out of the units present at Big Brook, the possibility that a previously
undetected taxon of crocodyliforms living inland or along the coast inflicted such marks is
certainly possible. Whatever taxon or taxa of crocodyliform inflicted the feeding traces on
YPM VPPU.021825, they possessed the ability to prey or scavenge on dinosaurs of more
than 3 m in length and cause extensive damage to dinosaur bones (Fig. 1).
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Regarding the scores present on the femur, similar scores on dinosaur and other
vertebrate bones deposited in marine settings have been attributed to sharks (e.g.,
Everhart, Everhart & Shimada, 1995; Schwimmer, 1997; Everhart, 1999; Shimada &
Everhart, 2004; Shimada & Hooks, 2004; Everhart & Ewell, 2006; Schein & Poole, 2014; Hill
et al., 2015). Though no teeth are imbedded in YPM VPPU.022361, the morphology of the
scores is highly consistent with those on dinosaur bones with embedded shark teeth (e.g.,
Schwimmer, 1997), warranting their identification as shark feeding traces. These marks are
also not mammalian or dinosaurian in origin because they lack striation marks and are
inconsistent with mammalian gnawing. Only one type of bony fish present in the Navesink
Formation, Xiphactinus (Gallagher, 1993), is similar to the size of the trace maker for the
scores present on the femur. However, the teeth of this taxon are elongate and conical and
do not fit with the deepened scores on the femur, which indicate sharpened, mediolaterally
compressed objects created them. Because of the near-identical morphology of the scrapes
on the femur described herein and previously reported shark feeding traces on vertebrate
bones (Everhart, Everhart & Shimada, 1995; Schwimmer, 1997; Everhart, 1999; Shimada &
Everhart, 2004; Shimada & Hooks, 2004; Everhart & Ewell, 2006; Schein & Poole, 2014; Hill
et al., 2015), the most parsimonious conclusion is that the scores were inflicted by shark
teeth.Gallagher (1993) reported two genera of shark in theNavesink Formation. Individuals
of Squalicorax pristodontus may be eliminated as candidates for the bite marks on YPM
VPPU.022361, as the teeth of that taxon were serrated and would have left striations on
the femur (e.g., Schein & Poole, 2014). Beyond this elimination, any confident assignment
of these traces to a specific shark taxon is impossible. The protocol of previous papers on
shark traces from the Cretaceous of eastern North America is followed, and thus these
scores are not assigned to specific taxa (e.g., Schwimmer, 1997; Schein & Poole, 2014).

The two small biological trace morphotypes on the tibia described herein are regarded
as invertebrate traces. Elongate borings on a plesiosaur bone from New Jersey may be from
an invertebrate similar to Lithophaga (R Johnson, pers. comm., 2018), which is known
to burrow into corals and stromatolites (e.g., Jones & Pemberton, 1988; Akpan, 1991).
Lithophaga ripleyana is the species known from the Navesink Formation (e.g., Gallagher,
Parris & Spamer, 1986). However, Lithophaga leaves larger, deeper clavate borings than
the elongate traces on the tibia shaft described herein. The source of these small biological
traces on the tibia is thus considered an indeterminate invertebrate and remains something
of a mystery.

The shallow, highly circular stains and indentations on the tibia shaft are also interpreted
as invertebrate traces, specifically barnacle marks. As noted, the biological nature of both
the stains and indentations is based on their notable radial or bilateral symmetry, which
would be unexpected results of the modification of the bone by debris in the water as the
partial limb bone was deposited. These traces compare favorably with the circular, stained
barnacle attachment scars described on other fossilized vertebrate remains (e.g., Martill,
1987;Donovan, 1988;Maier, 2003; Buckeridge, 2011; Boessenecker, 2013) and are the second
reported occurrence of these invertebrate traces on dinosaur bone. Both morphotypes of
traces identified as those of invertebrates are nearly absent from the lateral surface of YPM
VPPU.021825, indicating themedial surfacewas exposed to thewater column and the lateral

Brownstein (2018), PeerJ, DOI 10.7717/peerj.4973 12/23

https://peerj.com
http://dx.doi.org/10.7717/peerj.4973


surface was buried in the substrate. However, these traces are also not assigned to specific
ichnotaxa due to (1) their eroded nature and (2) the lack of described barnacle traces from
the Mesozoic. Previous work onMesozoic-age barnacle traces have also taken this tentative
position regarding specific assignment of traces (e.g., Janssen, Baal & Schulp, 2013).

Taphonomy of the dinosaur bones
The presence of the several different traces on the dinosaur specimens described herein
is important in illuminating both the taphonomy of terrestrial vertebrate remains in
the Maastrichtian marine deposits of the Atlantic Coastal Plain and the paleoecology of
the near-shore environments of the region. The bite marks of mid-sized crocodyliforms
(in comparison to the estimated sizes of other crocodyliforms to which bite marks have
been assigned; e.g., Noto, Main & Drumheller, 2012; Boyd, Drumheller & Gates, 2013) on
the partial tibia shaft YPM VPPU.021825 may suggest the specimen first underwent some
taphonomic event in a near-shore environment before transport onto the sea floor. InTexas,
an attritional vertebrate assemblage likely created by the large crocodyliform Deltasuchus
motherali has been documented at the Arlington Archosaur site of the Cenomanian
Woodbine Formation, which preserves a near-shore environment (e.g., Noto, Main &
Drumheller, 2012; Adams, Noto & Drumheller, 2017). It is certainly possible that such
an event occurred in the taphonomy of YPM VPPU.021825 before it was washed into
the Atlantic Ocean. Once deposited at sea, the medial surface of the fragmented tibia
YPM VPPU.021825 likely faced into the water column to experience significant abrasion
on account of the invertebrates. The rounded state of the edges of YPM VPPU.021825 is
consistent with the bone being eroded at sea and deposited in the deep,marine environment
represented by the Navesink Formation rather than being reworked from older units.
Furthermore, the lack of dinosaur remains from the early-middle Campanian and latest
Maastrichtian-Paleogene formations exposed at Big Brook (e.g., Gallagher, 1993) suggests
YPM VPPU.021825 originated in a Campanian-Maastrichtian to Maastrichtian horizon.

The distal femur YPM VPPU.022361 seems to have undergone a longer period of
erosion at sea based on its rough, exfoliated surface and the presence of shark feeding
traces on the bone. Several features of YPM VPPU.022361 support the prevalence of the
‘‘bloat-and-float’’ model amongMaastrichtian terrestrial vertebrate remains in the Atlantic
Coastal Plain. These include (1) the identification of the bone as the distal portion of a
limb bone, (2) the presence of shark feeding traces on the bone, and (3) the bone’s eroded,
fragmentary state. These taphonomic artifacts are also consistent with the preservation of
the bone in the deep marine setting of the Navesink Formation.

These bones thus support the presence of two taphonomic models among terrestrial
vertebrate remains in the Navesink Formation. The first includes taphonomic events in
near-shore environments, such as predation or scavenging by crocodyliforms and other
carnivores, and later deposition and taphonomic processes from both biotic (possible
indeterminate invertebrate traces) and abiotic (water erosion) on the seafloor. The second
is the ‘‘bloat-and-float’’ model, whereby dinosaur skeletons are washed out to sea and
bones on the fringes of the skeleton fall to the sea floor and experience significant water
wear, with scavenging by marine predators occurring throughout the process.
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Implications for the Maastrichtian vertebrate fauna of the Atlantic
Coastal Plain
In addition to their taphonomic significance, the dinosaur femur and crocodyliform traces
on the tibia described herein also add to the current vertebrate fauna of the Navesink
Formation a large morphotype of ornithomimosaur and a possibly new species of large
crocodyliform. Large ornithomimosaurs have also been documented in the Campanian of
Mongolia (representing two clades e.g., Osmólska, Roniewicz & Barsbold, 1972; Lee et al.,
2014) and Alberta and the Maastrichtian of the United States (‘‘Struthiomimus’’ sedens;
e.g., Longrich, 2008).

CONCLUSIONS
Partial hindlimb bones of large ornithomimosaurs from the Maastrichtian of New Jersey
preserve several types of traces, including those assignable to sharks, a previously undetected
morphotype of crocodyliform, and invertebrates. These fossils have the potential to inform
taphonomic models for vertebrate fossil deposition in the Atlantic Coastal Plain during
that time, evincing the presence of two modes in the Navesink Formation environment.
One included taphonomic stages in both near-shore and deep-sea settings, whereas the
other was more exclusively marine. Additionally, the specimens add to the diversity of
vertebrates in the Maastrichtian of eastern North America, suggesting the presence of large
ornithomimosaurs and a potentially unrecognized crocodyliform.
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