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ABSTRACT
The Sevatian of the late Norian is one of the key intervals in biotic turnover and in
changes of paleoclimate and paleoenvironments. Conodont faunas recovered from
two sections of upper Norian strata of the Dashuitang and Nanshuba formations
near Baoshan City in western Yunnan province provide new insights into the
diversity and biostratigraphy of the Sevatian conodonts within China as well as
globally. A lower Mockina (M.) bidentata Zone and an upper Parvigondolella (P.)
andrusovi Zone are identified in this area according to the first occurrences of
M. bidentata and of P. andrusovi. Rich conodont fauna of M. zapfei is detailed and
presents various intraspecific forms. A total of 19 forms of P1 elements are presented,
which, when combined with the reported conodonts in the M. bidentata Zone,
suggest that there was a peak in conodont diversity within the M. bidentata Zone. A
biotic crisis in the uppermost M. bidentata Zone is recognized from the contrast
between the diverse conodont fauna in theM. bidentata Zone and the rare conodonts
in the P. andrusovi Zone. The conodont turnover during the middle Sevatian
highlights the fact that the prolonged phases of the end-Triassic mass extinction
probably began in the transition interval from M. bidentata Zone to P. andrusovi
Zone.

Subjects Biodiversity, Evolutionary Studies, Paleontology, Taxonomy, Zoology
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INTRODUCTION
There is growing evidence that the end-Triassic mass extinction episode was a prolonged
interval comprised of multiple waves of extinctions (Benton, 1986, 1993; Hallam, 2002;
Bambach, Knoll & Wang, 2004; Tanner, Lucas & Chapman, 2004;Ward et al., 2004; Lucas
& Tanner, 2008; Onoue et al., 2016; Onoue, Hori & Kojima, 2017; Rigo et al., 2020;Wignall
& Atkinson, 2020; Racki & Lucas, 2020; Lucas, 2021). This protracted Late Triassic
extinction episode probably begin as early as the middle or late Norian (Sephton et al.,
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2002; Tanner, Lucas & Chapman, 2004; Lucas & Tanner, 2015; Rigo et al., 2020).
For example, the global diversity of marine and terrestrial tetrapods peaked during the late
Carnian, then dropped steadily from early Norian through late Rhaetian to reach a nadir at
the end of the Triassic (Benson et al., 2009; Benton et al., 2013). Almost all monotid bivalves
disappeared around the Norian-Rhaetian boundary (Wignall et al., 2007), and significant
turnovers in ammonoid and conodont faunas occurred during the late Norian (McRoberts,
Krystyn & Shea, 2008) and during the Norian-Rhaetian boundary interval (Ward et al.,
2001). According to the compilation of Benton (1993), seven families of gastropods had gone
extinct by the end of the Norian, whereas none underwent an extinction during the
end-Triassic and 35 families continued into the Jurassic.Onoue et al. (2016) concluded that a
succession of radiolarian extinctions took place at the mid-Norian, the Norian-Rhaetian
boundary interval and the Triassic-Jurassic boundary. Rigo et al. (2020) placed the onset of
the prolonged set of Late Triassic mass extinctions as at or very close to the Norian/Rhaetian
boundary based on δ13Corg data from sections distributed around the world. Other evidence
suggests that the onset was slightly earlier during the Sevatian.

During the Sevatian of the Late Norian, many genera underwent significant turnover
events or extinctions and there were significant changes in paleoclimate and
paleoenvironments. McRoberts (2010) observed that almost all of the bivalves of the
Halobia and Eomonotis genera disappeared and those of Monotis began to appear during
the Alaunian/Sevatian transition (ca. 217–213 Ma). Baranyi et al. (2018) quantitatively
analyzed the pollen data of the Chinle Formation in the southwestern United States and
found that turnovers in plants also occurred during this Alaunian/Sevatian transition, in
addition to other significant changes in flora and fauna in the middle of the Chinle
Formation. Qualitative and quantitative analysis of sporopollen in Poland documented a
shift to hygrophytes during the Sevatian, indicating a small change to more humid climates
(Mader, 2015). Benton (1986) proposed that diversity of genera of ammonoids declined
sharply during the Late Norian.Wiedmann & Kullmann (1996) further pointed out about
14 genera disappeared at the Alaunian/Sevatian boundary followed by a further
progressive or, at least gradual, decline in diversity of ammonoids during the Sevatian
through Rhaetian. Lucas (2018) summarized previous studies on ammonoids and
suggested that, as the diversity of ammonoids decreased, heteromorphs appeared during
the Sevatian. Onoue et al. (2016), Onoue, Hori & Kojima (2017) observed a gradual
extinction of radiolarians in the “Epigondolella” (=Mockina) bidentata Zone of the
Sevatian substage in the Sakahogi section of Panthalassa, and a short negative shift of
187Os/188Os and δ13Corg values in the lower Mockina bidentata Zone. In contrast,
calcareous ultra-microplankton expanded and diversified in the Mockina bidentata Zone
of the Sevatian (Gardin et al., 2012; Preto et al., 2013; Demangel et al., 2020).

In terms of the climatic and environmental trends, the curve of 18Ophosphate from
Triassic conodonts shows a prominent negative shift in the lower Sevatian, which indicates
an interval (“W3”) of relatively warm and humid climate (Trotter et al., 2015), even though
proxies from paleosol carbonate rocks in the Newark and Hartford basins of the United
States suggest a significant decrease in atmospheric pCO2 concentration during the
Sevatian (Schaller, Wright & Kent, 2015; Kent, Olsen &Muttoni, 2017). Zaffani et al. (2017)
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identified three negatively biased events (S1, S2 and S3) by the Sevatian portion of the
δ13Corg curves of the Pignola-Abriola, the Mt Volturino and the Madonna del Sirino
sections in southern Italy, which enhanced the broader negative shift in δ13Ccarb recorded
by Muttoni et al. (2014). There was a rapid northward dispersal of sauropods from
Gondwana to temperate Europe and Greenland (215–212 Ma, Kent & Clemmensen, 2021).
The Manicouagan impact event (215–214 Ma, van Soest et al., 2011; Sato et al., 2021) in
Canada might have punctuated these climatic trends.

Therefore, the Sevatian substage of the Norian is one of the key intervals in biological
evolution within the Late Triassic and heralds the onset of the series of end-Triassic mass
extinctions. The major changes in biology and climate occurred during the conodont
M. bidentata Zone or in the transition interval of M. bidentata Zone/P. andrusovi zone.
Conodonts, prior to their total extinction in the latest Triassic, have advantages in the
study of the biotic events and reconstruction of precise biostratigraphy during the Triassic
because of their rapid evolution, wide distribution and well-preserved characteristics.
Nevertheless, conodonts of the Sevatian have been poorly studied; indeed, current research
records suggest an anomalously low rate of conodont evolution during the Sevatian
(Orchard, 2018; Rigo et al., 2018). In particular, it appears that the duration of the single
M. bidentata Zone was more than 5 Myr, which is inconsistent with the typical
fast-evolving nature of these conodont animals (e.g. Mosher, 1968; Bergström, 1983;Miller
& Clark, 1984; Orchard, 2007, 2018; Chen et al., 2019). However, evolving and disputed
concepts of the classification and identification of conodonts of Sevatian age (e.g. Orchard,
1991b, 2018; Dong & Wang, 2006; Rigo et al., 2018; Karádi et al., 2021) might have
distorted this picture.

Development and complexity of Sevatian conodont biostratigraphy
Huckriede (1958) established a vaguely defined form species of “Polygnathus” abneptis,
which contains various denticulated P1 elements, and some of these denticulated
specimens occurred in the Sevatian substage of the Mediterranean. Mosher (1968)
established M. bidentata and summarized that “Epigondolella (E.)” abneptis and
Norigondolella (N.) steinbergensis co-occurred with M. bidentata in Europe, whereas only
“E.” abneptis occurred in the M. bidentata Zone in North America. However, because the
original definition of “E.” abneptis was based on a variety of platform conodonts
(Huckriede, 1958; Karádi, 2018), “E.” abneptis actually includes many different forms of P1
elements, which indicates a more diverse suite of conodont fauna in M. bidentata Zone.
Kozur & Mostler (1972, table 1) suspected that M. postera may range into the Sevatian of
the Tethyan Triassic strata of Europe (excluding the Far Mediterranean Basin and Greece).
Kovács & Kozur (1980, table 2) presented stratigraphic ranges for the most important
Middle and Upper Triassic conodonts, and indicated that M. mosheri, N. steinbergensis,
M. postera, M. longidentata and O? multidentata occurred in M. bidentata Zone. Krystyn
(1980, figs. 6, 8) also compiled that M. postera, “E.” abneptis and N. steinbergensis range
intoM. bidentata Zone. The taxa ofM. postera (Wang & Dong, 1985; Gullo, 1996; Channell
et al., 2003; Muttoni et al., 2004; Rožič, Kolar-Jurkovšek & Šmuc, 2009) and
N. steinbergensis (Channell et al., 2003; Hornung, 2005; Rožič, Kolar-Jurkovšek & Šmuc,
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2009;Mazza, Rigo & Gullo, 2012; Onoue et al., 2018; Du et al., 2020) are reported in many
places in the Tethyan realm.Wang & Dong (1985) first presented eastern Tethyan platform
conodonts of Norian age in Baoshan area, Yunnan Province of China, and showed that
M. postera, “E.” abneptis spatulatus, “E” multidentata and “E.” abneptis abneptis are
associated with M. bidentata.

Many other form species accompanying M. bidentata in the Tethys realm have been
discovered during the 21st century. M. zapfei (Channell et al., 2003; Giordano et al., 2010;
Rigo et al., 2018; Du et al., 2021; Jin et al., 2022), M. slovakensis (Gullo, 1996; Giordano
et al., 2010; Muttoni et al., 2004; Rigo et al., 2018; Du et al., 2021; Jin et al., 2022) and “P.”
vrielyncki (Channell et al., 2003; Rigo et al., 2018; Du et al., 2021) are common species that
occur in the M. bidentata Zone. “M.” englandi (Krystyn et al., 2007; Onoue et al., 2018;
Du et al., 2020) and “M.” carinata (Du et al., 2020) are also reported. Karádi (2021)
displayed “Orchardella” mosheri morphotype B and M. englandi from Hungary, but did
not state whether the P1 elements of the two form species were found in the M. bidentata
Zone. Some different forms of P1 elements identified as M. mosheri morphotype B or
morphotype A (Du et al., 2020, fig. 3.8; Krystyn et al., 2007, pl. 1, fig. 6; Jin et al., 2022, fig.
4.8) occur in the M. bidentata Zone. Segminate P1 elements of P. lata (Du et al., 2021),
conical P1 elements of Zieglericonus (Channell et al., 2003; Du et al., 2021) and transitional
forms with just one marginal denticle and no or extremely reduced platform are found in
the M. bidentata Zone (Karádi et al., 2020; Du et al., 2021; Zeng et al., 2021). In addition,
many undefined species or forms of P1 elements are documented in theM. bidentata Zone,
such as M. cf. zapfei (Channell et al., 2003), M. carinata? (Du et al., 2020, fig. 3.9), M. cf.
slovakensis (Channell et al., 2003), E. triangularis? (Channell et al., 2003), Mockina sp.
(Du et al., 2020), M. aff. tozeri (Mazza, Rigo & Gullo, 2012; Onoue et al., 2018),
E. uniformis? (Mazza, Rigo & Gullo, 2012; Onoue et al., 2018), etc. Zeng et al. (2021, fig. 2.3)
first found M. sakurae and Jin et al. (2022) erected a new species M. passerii Rigo & Du,
2022 in the M. bidentata Zone of the Baoshan area, China.

In North America, there are only a few reported association form species in the
M. bidentata Zone; mainly these are E. englandi (Krystyn et al., 2007; Onoue et al., 2018;
Du et al., 2020), E. carinata (Du et al., 2020), N. steinbergensis and unidentified species of
Parvigondolella (Orchard, 1991b; Orchard et al., 2007b). In Japan of the Panthalassa realm,
Yamashita et al. (2018) figured eight different forms of P1 elements from theM. bidentata
Zone, and respectively assigned these to M. spiculata, M. elongata, M. mosheri A,
M. slovakensis, Mockina sp. indet. A, Mockina sp. indet. B and P. aff. vrielyncki.

The overlying P. andrusovi Zone was first introduced by Kovács & Kozur (1980), who
put it above the M. bidentata Zone and below the Mi. hernsteini Zone and with an
interpreted age corresponding to the middle of the ammonoid Cochloceras suessi Zone.
Gaździcki, Kozur &Mock (1979) used these three conodont biozones to subdivide Sevatian
strata of the Alpine-Mediterranean Triassic. Later, Kozur (2003), Channell et al. (2003),
Rožič, Kolar-Jurkovšek & Šmuc (2009) and Gale et al. (2012) combined the P. andrusovi
and Mi. hernsteini into one single biozone. At present, P. andrusovi Zone is widely
recognized in the Tethyan realm (Rigo et al., 2018; Karádi et al., 2020; Du et al., 2021;
Zeng et al., 2021). Yamashita et al. (2018) discovered P. andrusovi in Japan. In North
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America, despite no P. andrusovi having been reported, several species of Parvigondolella
occur from the upper Norian to the Rhaetian (Carter & Orchard, 2007; Orchard et al.,
2007a, 2007b).

This overview indicates that conodont form species are more abundant and varied in
the M. bidentata Zone of the early Sevatian than initially thought, and that more detailed
research of the fauna is required in order to enhance the database for conodont
biostratigraphy, evolution and diversity. It is essential that such studies include a more
precise intercalibration to other biostratigraphic, geochemical and magnetostratigraphic
scales. China, located in the eastern Tethys, has Sevatian strata distributed in Heilongjiang
of northeastern China (Table 1, Wang, Kang & Zhang, 1986; Wang & Wang, 2016), Tibet
of southwestern China (Table 1, Mao & Tian, 1987; Yi et al., 2003; Ji et al., 2003) and
Western Yunnan of southwestern China (Table 1, Wang & Dong, 1985; Dong & Wang,
2006; Du et al., 2020; Zeng et al., 2021; Jin et al., 2022). However, the investigation on
Norian conodonts in these locations is very limited and many conodont taxa are not
revised (Table 1). For example, the presented specimens identified as “E.” multidentata in
the documentations given in Table 1 actually all have different morphological features
from O? multidentata. For example, the specimen (Wang & Dong, 1985, pl. 1, fig. 16)
identified as “E.” multidentata has three and one marginal denticles, respectively, on each
anterior platform margin, which more resembles M. zapfei (see entry below in Systematic
paleontology), and the other specimen of “E.” multidentata (Wang & Dong, 1985, pl. 1,
fig. 17) differs from O? multidentata by having only one inner anterior marginal denticle
and denticulated posterior platform margins. As our article mainly focuses on the
conodont diversity during the Norian, especially the Sevatian, we don’t discuss the
accuracy of conodont classification and hence retain the authors’ original taxonomy in
Table 1.

Only a few studies have focused on the late Norian conodonts of the Baoshan area.
The first byWang & Dong (1985) established an “E.” postera Zone and “E.” bidentata Zone,
and assigned most of the Dashuitang Formation to their “E.” postera Zone and the upper
Dashuitang Formation and the lower Nanshuba Formation to their “E.” bidentata Zone.
Even though the P1 elements illustrated inWang & Dong (1985) only present a single view,
at least eight different forms in upper view can be discerned. Late, Wang et al. (2019)
discovered “M.” englandi (Orchard, 1991b), “M.” aff. englandi and M. bidentata in the
Dashuitang Formation. Du et al. (2020) presented several additional forms of Norian
conodonts from the Nanshuba Formation. Zeng et al. (2021) illustrated M. sakurae
(fig. 2.3), P. andrusovi (figs. 1/e, 4/3), P1 elements with only one marginal denticle and no
platform (figs. 5.2h, 5.7) and P1 elements with only a pair of anterior marginal denticles
and squared, smooth posterior platform (figs. 4.2b–d) for the first time from the Baoshan
area. Jin et al. (2022) first reported M. slovakensis from the Baoshan area and erected
M. passerii Rigo & Du, 2022. These studies imply that the conodonts in the Upper Triassic
strata of the Baoshan block are probably very diverse.

Therefore, because the Baoshan area of western Yunnan has yielded relatively diverse
late Norian conodonts (Wang & Dong, 1985; Du et al., 2020; Zeng et al., 2021; Jin et al.,
2022) and has easy access, we performed a detailed study of conodonts in two sections in
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Baoshan to acquire a detailed set of data to gain a better understanding of the Sevatian
conodonts of eastern Tethys.

Geological setting
The conodonts described in this article were recovered from the Madoupo section (MDP)
and the Potou section (POT), which are located about 5 to 6 km apart in the Longyang
district, Baoshan city, western Yunnan Province, southwestern China (Fig. 1C). These two
sections are situated in the Baoshan tectonic block, which is the current northern part of
the Sibumasu terrane (Fig. 1A, Ali et al., 2013; Liao et al., 2015; Cai et al., 2017) and may

Figure 1 Geographic locations of the studied sections. (A) Paleogeographic map (after Golonka, Embry & Krobicki, 2018) showing the position of
the Baoshan block during Late Triassic prior to accretion to South China. (B) Late Triassic paleogeography map of Yunnan in modern coordinates
(modified from Bureau of Geology and Mineral Resources of Yunnan Province, 1990) showing the position and the depositional facies of the Baoshan
block. (C) Map showing the locations of the described sections. Full-size DOI: 10.7717/peerj.14517/fig-1
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have accreted to South China during the Late Triassic or Early Jurassic (Sone & Metcalfe,
2008; Morley, 2018). The upper Triassic marine sediments of the Baoshan block are well
developed (Figs. 1A, 1B), and can be subdivided into the Dashuitang Formation and the
Nanshuba Formation (Li, 1976; Bureau of Geology and Mineral Resources of Yunnan
Province, 1980, 1981; Wang & Dong, 1985; Zhao et al., 2012; Wang et al., 2019; Du et al.,
2020; Jin et al., 2022). The ages of the outcropping limestones of the Dashuitang Formation
and of the Nanshuba Formation are constrained by conodonts and radiolarians as
Alaunian-Sevatian and as Sevatian respectively (Wang & Dong, 1985; Wang et al., 2019;
Du et al., 2020; Jin et al., 2022).

The interpretations of the depositional environments of the Dashuitang and Nanshuba
formations are inconclusive. The earliest studies inferred that the Upper Triassic strata on
the Baoshan block were deposited in littoral to shallow-marine environments (Fig. 1B)
(Bureau of Geology and Mineral Resources of Yunnan Province, 1980, 1990). Hao (1999)
thought that the limestone of the Dashuitang Formation was a shallow carbonate platform
facies. Bao et al. (2012) discovered seismites in the Dashuitang Formation in the Jinji area of
Baoshan, and therefore concluded that it deposited in a slope-basin environment. Peng,
Huang & Yuang (2014) found carbonate-clastic turbidites in the Dashuitang Formation at
Yaoguan of western Yunnan, and inferred that it was deposited in a rifted trough basin.
Wang et al. (2019) deduced from the microfacies of the upper limestone of the Dashuitang
Formation in the Dabaozi area of Baoshan that the setting was a continental shelf
environment. Wu et al. (2020) subdivided the Dashuitang Formation deposits in the
Hongyan section into eight microfacies, and distinguished three different depositional
settings—deep-water shelf facies, slope facies, and base-of-slope facies—within a generally
relatively low-energy deep-water environment, which corresponded to an extensive
transgression during Late Triassic across northwestern Yunnan.

For the overlying Nanshuba Formation, most researchers agree that it was deposited in
deeper waters than the Dashuitang Formation, but dispute whether the Nanshuba Formation
was deposited on the marginal part of a slope-basin (Zhao et al., 2012), on the marginal part of
a rifting seaway (Wang, Li & Duan, 2000), or on the shelf of a shallow island arc with steep
slopes (Wang et al., 2019). The Nanshuba Formation in Baoshan area is dominated by
calcareous mudstone and sandy mudstone but with a few interbeds of marl and limestone.
Regionally, the total thickness of this formation ranges between 800–1,400 m, but varies
dramatically laterally. The thickness of the interbedded limestones can be up to 100m (Bureau
of Geology and Mineral Resources of Yunnan Province, 1990, p. 194).

The lower ca. 13 m of the Potou section is mainly composed of grayish yellow
thick-bedded bioclastic limestone and greyish white medium-bedded limestone of the
upper Dashuitang Formation. The exposed strata are slightly fragmented and weathered
on the surface of the section. The Dashuitang Formation at the Potou section conformably
underlies the Nanshuba Formation, which was not well exposed due to two significant
covered intervals and with herbage and low shrubs hiding other parts. The lower part of
the Nanshuba Formation exposed below the first covered interval consists of thin- to
medium-bedded grey to white limestone and an upper greyish green shale interbedded
with grayish-yellow marl. The upper parts of the Nanshuba Formation exposed at the
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Figure 2 Conodont distribution in the Potou section and in the Madoupo section, Baoshan city, Yunnan Province, southwestern China.
Full-size DOI: 10.7717/peerj.14517/fig-2
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Table 2 Stratigraphic distribution and statistic results of conodont species from the Potou section and the Madoupo section.
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POT14 1 1

POT13 1 1

POT12 1 1 3

POT11 1 1

POT10 1 1 4

POT9 1 1 4

POT8 1 2 1 3

POT7 1 2 1

POT6 1 1 1 4

POT5 1 2

POT4 1

POT3 1 1

POT2 1 3

POT1 2 5 3 2 11 3 1

MDP26

MDP25 1

MDP24

MDP23

MDP22

MDP21

MDP20

MDP19

MDP18

MDP17

MDP16

MDP15

MDP14

MDP13

MDP12 1

MDP11

MDP10 2 1 3 1 4

MDP9 4

MDP8 1 2 1 2 28 1 1 59 3 77 25

MDP7 5 2 4 6 1 15 3

MDP6

MDP5
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Potou section mainly consist of medium-bedded greyish white bioclastic limestone and
micritic limestone. The Madoupo section is relatively continuous, ca. 56-m exposure, with
the lower part along a hiking road transitioning to the upper part at the top of the hill.
It mainly consists of grey micritic limestone with a few beds of bioclastic limestone.
The intervals of the Nanshuba Formation studied by Wang et al. (2019) and by Du et al.
(2020) could be stratigraphically lower than our studied section.

MATERIALS AND METHODS
Limestone samples at the Baoshan block were collected from the Madoupo section (26
samples) and the Potou section (14 samples) (for sampling positions see Fig. 2). The weight
of each sample from the Potou section ranges between 5 and 10 kg. No precise weights
were made of the samples from the Madoupo section, but each sample weighed no less
than ~5 kg. The samples were crushed into small pieces and processed in a 10% solution of
acetic acid. The process of extracting conodonts is detailed in Jiang et al. (2019) and Yuan,
Jiang & Wang (2015).

Six samples of the Madoupo section yielded conodonts (Table 2), but only five of the
samples (MDP7, MDP8, MDP10, MDP12 and MDP25) yielded identifiable P1 elements
and these show a Color Alteration Index (CAI) of 1–1.5. A total of 126 identifiable P1
elements were obtained from the Madoupo section, most of which were collected from the
sample MDP8. All samples from the Potou section yielded conodonts, and these show a
CAI value of 1–2. A total of 52 identifiable P1 elements were collected. The collected
specimens were photographed using a scanning electron microscope (SEM).

Repository and institutional abbreviation—All conodonts examined in this study are
deposited in the School of Earth Sciences, China University of Geosciences, Wuhan,
Hubei, P.R. China.

RESULTS
The occurrence and distribution of conodont taxa in each bed are shown in Fig. 2 and
Table 2. Two conodont zones are discriminated based on the first occurrences (FO) of

Table 2 (continued)
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MDP2 1

MDP1

Note:
A., Ancyrogondolella; E., Epigondolella;M., Mockina; N., Norigondolella; P., Parvigondolella; Z., Zieglericonus;Mi., Misikella; POT, Potou section; MDP, Madoupo section.
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M. bidentata and of P. andrusovi. Marker species of M. bidentata are distributed nearly
throughout the entire Potou section. The lower part of the Madoupo section that yielded
conodonts also recoveredM. bidentata. P. andrusovi first occurs at the ~29.5 m level in the
Potou section above the appearance of a transitional form between M. bidentata and
P. andrusovi and Parvigondolella sp. Taking the layer with the lowest occurrence of
P. andrusovi as the zonal boundary, then the Potou section can be divided into a
M. bidentata Zone and a P. andrusovi Zone. As only one specimen of a ?transitional form
between M. bidentata and Mi. hernsteini, which is described below, was found in the
uppermost part of the Madoupo section, then it is inferred that the entire Madoupo section
is still within the M. bidentata Zone.

Mockina bidentata Zone—Lower limit: the first occurrence (FO) of M. bidentata.
Upper limit: the FO of P. andrusovi.

Associated taxa in the Potou section: E. carinata, E. aff. englandi, E. passerii,
Epigondolella sp., Mockina sp., Norigondolella? sp. indet., Parvigondolella sp., P.?
vrielyncki, Zieglericonus? sp. and transitional form betweenM. bidentata and P. andrusovi.
A total of 10 different forms of P1 elements occurred in M. bidentata Zone. One broken
specimen presents characterizations of genus Norigondolella (Figs. 3PP–3QQ), with flat
and unornamented platform margins which extend to or near the anterior end and may
have intense microcrenulation, with an narrow groove and with laterally compressed
denticles which are fused in the lower parts and are separated near the tips. Five P1
elements has only one marginal denticle and no platform, which were also presented in the
P. andrusovi Zone of the Xiquelin section in Baoshan area (Zeng et al., 2021). Karádi et al.
(2020) andDu et al. (2021) illustrated in detail that this form of P1 elements is a transitional
form between M. bidentata and P. andrusovi.

Associated taxa in the Madoupo section: ?Ancyrogondolella (A.) praeslovakensis,
E. carinata, E. aff. englandi, E. passerii, Epigondolella sp., M. elongata, M. medionorica, ?
M. medionorica, M. zapfei, Mockina sp. A, Zieglericonus? sp. and a probable transitional
form betweenM. bidentata andMi. hernsteini. A total of 12 different forms of P1 elements
are found.

One broken P1 element has sub-symmetrically bifurcated keel end, denticulated
anterior platform, smooth posterior platform margins, anterior-located cusp, submedian
pit, highly fused blade denticles, abrupt blade end and peculiar arched lateral profile of the
base (Figs. 3MM–3OO), which are identical with A. praeslovakensis. However, the
classification of this P1 element can’t be totally confirmed due to the broken posterior
platform. M. medionorica previously was commonly recovered from the Alaunian of the
western Tethys (Kovács & Kozur, 1980; Vrielynck, 1987; Kozur, 2003; Channell et al., 2003;
Karádi et al., 2021) and of the Panthalassa (Ishida & Hirsch, 2001), its occurrence in the
lower Sevatian of the Madoupo section in eastern Tethys indicates that it has a longer
range and wider distribution.

Both sections yield E. carinata, E. aff. englandi, E. passerii and Epigondolella sp.
One conic element from the Madoupo section bears a small node above the anterior base
(Figs. 4T–4U), the other conic element from the Potou section possesses a small node
above the posterior base (Figs. 4V–4W), and both conic elements have a normally
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Figure 3 SEM images of conodonts from the Potou section and the Madoupo section. (A–T) Epi-
gondolella carinata Orchard, 1991b; A–C, D–F, I–K, L–N, O–Q catalog numbers are MDP7-038, MDP8-
025, MDP7-113, MDP7_i117and MDP10-059, respectively, all from the Nanshuba Formation; G–H,
R–T, catalog numbers are POT1_i105 and POT1_i022, respectively, both from the Dashuitang For-
mation. (U–BB) Epigondolella sp.; U–W, POT1_i011, from the Dashuitang Formation; X–Z,
MDP8_i059, from the Nanshuba Formation; AA–BB, POT9_i050, from the Nanshuba Formation.
(CC–FF, JJ–LL) Mockina sp.; CC, JJ–LL, catalog numbers are POT2-57 and POT2_i058, respectively, all
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expanded and moderately excavated basal cavity; and these features are apparently
different from the morphological characteristics of the existing species of Zieglericonus
which has only one conical cusp, widely expanded and deeply excavated base. It is easy to
confuse the two conic elements with some broken ramiform elements of multi-element
apparatuses. Many studies show that the groove or basal cavity extends from either side of
the pit under the cusp in S0, S2, S3−4, and M elements of a multi-element apparatus
(Goudemand et al., 2011, 2012;Orchard, 2005; Zhang et al., 2017;Demo, 2017;Huang et al.,
2019a, 2019b; Zeng et al., 2021), which means that if the four types of ramiform elements
broke around the cusp, there should be fracture marks on both ends of the basal groove.
However, the well-preserved anterior end of the basal cavity in both conic elements from the
Potou section and the Madoupo section shows no interruption, and hence can’t be the
broken S0, S2, S3−4, and M elements. The two conic elements also can’t be broken
grodelliform S1 elements as there is no additional node develops before the terminal cusp or
the denticle (commonly there are two denticles) after the terminal cusp is long. In view of the
small sample size, the two conic elements are temporarily classified as ?Zieglericonus sp.

Mockina medionorica (Figs. 5Y–5BB), which has previously been reported only in the
Alaunian of the middle Norian, was discovered by us in the Sevatian strata. The occurrence
of M. medionorica and M. elongata (Figs. 5A–5X) in the M. bidentata Zone may indicate
that many conodont species considered as middle Norian survived into the late Norian.

Transitional forms between M. bidentata and P. andrusovi occur in the Potou section.
Large M. bidentata with long blades occur from levels 14 to 19 m in the Potou section
(from POT4 to POT8), below the interval with small transitional forms with no more than
six denticles (Figs. 6VV–6AAA) and above the interval having large transitional forms
with more than seven denticles (Figs. 6PP–6QQ, 6RR–6SS). Therefore, above the sampling
layer of POT8 in the Potou section, the entire evolutionary line from the largeM. bidentata
to P. andrusovi is present in stratigraphic order, which isM. bidentata –> transitional form
between M. bidentata and P. andrusovi –> Parvigondolella sp. –> P. andrusovi (shown by
the white arrows in Fig. 6). Therefore, it can be inferred that the age of the Potou section
ranges from the upperM. bidentata Zone to the lower P. andrusovi Zone. The transitional
form of P1 elements with only one marginal denticle is also common in the P. andrusovi
Zone of the Xiquelin section in the same area (Zeng et al., 2021, figs. 5.2h, 5.7), thereby
indicating a wide distribution in the Sevatian of the Baoshan block.

Another transitional P1 element from M. bidentata recovered from the Madoupo
section (Figs. 6BBB–6CCC) differs from the transitional form between M. bidentata and
P. andrusovi by the terminal big cusp and the moderately opened and excavated posterior
base. P. lata, P. ciarapicae and Mi. hernsteini all have big terminal cusps, but the posterior

Figure 3 (continued)
from the Dashuitang Formation; DD–FF, POT6-32, from the Nanshuba Formation. (GG–II) ?Mockina
bidentata (Mosher, 1968), POT9-48, from the Dashuitang Formation. (MM–OO) ?Ancyrogondolella
praeslovakensis (Kozur, Masset & Moix, 2007), MDP8-001, from the Nanshuba Formation. (PP–QQ)
Norigondolella? sp. indet., POT6_i033, from the Nanshuba Formation. (RR–SS) Mockina zapfei (Kozur,
1973), a juvenile specimen, MDP8-2204, from the Nanshuba Formation. MDP and POT is the abbre-
viation of Madoupo and Potou, respectively, indicating the specimens come from the two sections
respectively. Full-size DOI: 10.7717/peerj.14517/fig-3
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Figure 4 SEM images of conodonts from the Potou section and the Madoupo section. (A–S) Epi-
gondolella passerii (Rigo & Du, 2022); A–C, POT7_i100, from the Nanshuba Formation of the Potou
section; D–F, G–I, J–L, M–N, O–P, catalog numbers are POT1_i104, POT2_i097, POT1_i102,
POT5_i098 and POT1_i014, respectively, all from the Dashuitang Formation of the Potou section; Q,
R–S, catalog numbers are MDP7-3503 and MDP7-3301, respectively, from the Nanshuba Formation of
the Madoupo section. (T–W) Zieglericonus? sp., from the Nanshuba Formation; T–U, MDP7-110, from
the Madoupo section; V–W, POT6_i034, from the Potou section. (X–LL) Epigondolella aff. englandi
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base or keel (commonly posterior to the pit) of P. lata and P. ciarapicae is commonly not
excavated and hence the pit can be easily discerned. The posterior basal cavity of this P1
element resembles that ofMi. hernsteini, therefore it seems that the P1 element can evolve
into Mi. hernsteini by further widening the groove anterior to the pit and missing the
marginal denticle. Therefore, it can be inferred that this P1 element may be a transitional
form between M. bidentata and Mi. hernsteini.

Because the first occurrence level of transitional forms from M. bidentata are at the
uppermost level of the Madoupo section and the lowermost portion of Potou section, it can
be inferred that the layers of the Madoupo section that yielded the most conodonts (MDP7
and MDP8) are older than the sampled lower portion of the Potou section.

Parvigondolella andrusovi Zone—Lower limit: FO of P. andrusovi. Upper limit: FO of
Mi. hernsteini which was not found in the Potou section and the Madoupo section.

Associated taxa: P.? vrielyncki and M. bidentata. Below the FO of P. andrusovi that
defines the base of this zone, a transitional form between M. bidentata and P. andrusovi
(Figs. 6PP–6QQ) occurs in sample level POT11, followed by a specimen that has lost all
marginal denticles (Parvigondolella. sp., Figs. 6RR–6SS) in sample level POT12.

In China, for a long time, P. andrusovi had been reported only in the Xikeng section of
the Nadanhada Terrane of northeastern China (Wang, Kang & Zhang, 1986, see Table 1).
Then, Dong & Wang (2006) presented the lateral view of a broken P. andrusovi from the
Nanshuba Formation of the Dabaozi section in Baoshan area. Zeng et al. (2021) displayed
another specimen of P. andrusovi from the Nanshuba Formation of the Xiquelin section in
the Baoshan area. The Poutou section is the third section in the Baoshan area that yields
P. andrusovi, thereby indicating a wide distribution of this species in the Sevatian of the
Baoshan area.

Systematic paleontology
Class Conodonta Pander, 1856
Order Ozarkodinida Dzik, 1976
Superfamily Gondolelloidea Lindström, 1970
Family Gondolellidae Lindström, 1970
Genus Epigondolella Mosher, 1968

Type species—Polygnathus abneptis Huckriede, 1958 from the Alaunian (Cyrtopleurites
bicrenatus Zone) of Sommeraukogel, Austria.

Remarks—Genus Epigondolella is characterized by strongly denticulate anterior and
posterior lateral platform margins, by a high blade with most part or even the whole free
from the platform, by anteriorly located or rarely sub-centrally positioned cusp and pit,

Figure 4 (continued)
Orchard, 1991b; X–Y, Z–AA, DD–FF and JJ–LL, catalog numbers are POT1_i008, POT1_i020,
POT1_i060 and POT1_i009, respectively, all from the Dashuitang Formation of the Potou section;
BB–CC, MDP10-061, from the Nanshuba Formation of the Madoupo section; GG–II, POT8_i036, from
the Nanshuba Formation of the Potou section. Full-size DOI: 10.7717/peerj.14517/fig-4
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Figure 5 SEM images of conodonts from the Nanshuba Formation of the Madoupo section. (A–X)
Mockina elongata (Orchard, 1991b); A–C, D–F, G–H, I, J–L, M–N, P–R, S–U, V–X, catalog numbers are
MDP8_i053, MDP8_i060, MDP8_i058, MDP8_i036, MDP8_i045, MDP8_i051 (early juvenile
specimen), MDP8_i049 (late juvenile specimen), MDP8_i048 and MDP8_i041, respectively. (Y–BB)
Mockina medionorica Kozur, 2003; Y–Z, AA–BB, catalog numbers are MDP12-i118 and MDP8-i039,
respectively. (CC–EE) Epigondolella aff. englandi Orchard, 1991b, a juvenile specimen, MDP7-112.
(FF–II) Mockina bidentata (Mosher, 1968); FF–HH, II, catalog numbers are MDP7-3902 and MDP10-
060, respectively. Full-size DOI: 10.7717/peerj.14517/fig-5
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Figure 6 SEM images of conodonts from the Potou section and the Madoupo section. (A–JJ, DDD)
Mockina bidentata (Mosher, 1968); A–B, C–E, E–F, G–H, I–K, L–M, N–O, P–Q, R–S, T–U, V, II–JJ,
catalog numbers are POT1_i006, POT1_i007, POT1_i018, POT1_i023, POT1_i013, POT1_i015,
POT1_i016, POT1_i021, POT1_i017, POT1_i019, POT3-1 and POT1_i024, respectively, all from the
Dashuitang Formation; W–Y, Z–BB, CC–EE, FF–GG, HH, DDD, catalog numbers are POT4_i030,
POT5_i047, POT8_i038, POT8_i040, POT10_i081 and POT14-1, respectively, all from the Nanshuba
Formation; II–JJ, early juvenile specimen. (KK–LL,MM–OO) Pavigondolella? vrielyncki Kozur &Mock, 1991,
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and by a single keel with either a pointed, rounded, blunt, obliquely truncated, or squared
or sinuous keel end which may bear a vestige of the secondary keel on one side.

The characteristics of the base of Norian conodonts are considered to be very important
in the taxonomy of the genus (Ishida & Hirsch, 2001; Orchard, 2018) because changes in
the bases are considered to reflect the evolution of Late Triassic conodonts (Kozur, 1990;
Giordano et al., 2010; Bertinelli et al., 2016; Karádi et al., 2020). Orchard (2018) classified
lower Norian ornate P1 elements with a bifid keel into Ancyrogondolella, and mid-Norian
ornate and asymmetric or less commonly symmetric P1 elements with a single keel
(pointed, or squared-off, or obliquely truncated or sinuous) into Epigondolella, which
reconstructs the phylogeny between genera Ancyrogondolella and Epigondolella. In the
light of the fact that bifid-keeled ornate P1 elements were mostly substituted by
single-keeled ornate P1 elements from the early Norian to the late Norian and by the
abundant single-keeled ornate P1 elements from the upper Norian of Baoshan area (Potou,
Madoupo and the Xiquelin sections in Zeng et al. (2021)), we follow the definition of
Epigondolella as revised by Orchard (2018). But the symmetry of the posterior platform
was not differentiated in genus Epigondolella and there might be intraspecific differences.

Epigondolella carinata Orchard, 1991b
Figures 3A–3T
1983 Epigondolella postera (Kozur and Mostler) population; Orchard, p. 186–188, figs.
11A, C.
1991b Epigondolella carinata n. sp.; Orchard, p. 308, pl. 5, figs. 4, 5, 10.
2007 Epigondolella carinata Orchard; Carter & Orchard, pl. 2, figs. 15, 21.
?2007b Epigondolella carinata; Orchard et al., figs. 8.14–8.15.
2020 Mockina carinata; Du et al., figs. 3.1–3.2, 3.5.
2020 Mockina sp.; Du et al., figs. 3.10–3.11.

Materials—Five P1 elements from MDP7, two P1 elements from MDP8, two P1 elements
from MDP10, two P1 elements from POT1.

Description—The P1 elements have an ovoid platform bearing two and one high denticles
respectively on each anterior lateral margin. The posterior marginal denticles increase in
number as the element posteriorly grows longer. The length ratio of the platform-to-
element is about four sevenths. The blade is as long as half of the element and most of it is

Figure 6 (continued)
catalog numbers are POT13_i061 (from the Nanshuba Formation) and POT1_i059 (from the Dashuitang
Formation), respectively. (PP–QQ, VV–AAA) transitional form between M. bidentata and P. andrusovi;
PP–QQ, POT11_i082, from the Nanshuba Formation; VV–XX, YY, ZZ–AAA, may be juvenile P1 ele-
ments, catalog numbers are POT1_i010, POT1_i103 and POT8_i089, respectively; VV–YY, from the
Dashuitang Formation; ZZ–AAA, from the Nanshuba Formation. (RR–SS) Parvigondolella. sp.,
POT12_i054, from the Nanshuba Formation. (TT–UU) Parvigondolella andrusovi Kozur & Mock, 1972,
POT13_i057, from the Nanshuba Formation. (BBB–CCC) ?transitional form between M. bidentata and
Mi. hernsteini, MDP25-1, from the Nanshuba Formation of the Madoupo section. A–AAA, from the
Potou section. White arrows show the evolutionary trend from M. bidentata to P. andrusovi.

Full-size DOI: 10.7717/peerj.14517/fig-6
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free from the platform. The posterior-most and anterior-most denticles of the blade are
commonly smaller and lower than other denticles, which are of similar height; therefore
the blade gradually transitions to the low carina, which consists of three to four discrete
nodes. There are two to three carinal nodes behind the anteriorly located cusp.
The posterior carinal nodes may extend beyond or near the pointed platform end, and
increase in height and inclination after the cusp. The pit is anteriorly migrated and is
located on a medium wide keel, which is posteriorly prolonged. The keel end is pointed to
narrowly rounded.

Comparison—Epigondolella passerii has a platform constriction. E. englandi and
E. aff. englandi have only one high marginal denticle on each platform side.M. postera has
an asymmetrical posterior platform and a posterior carina that never reaches to the
platform end. M. medionorica has smooth posterior platform margins and a short
posterior carina that always stops before the platform end.

Remarks—The P1 elements resemble E. carinata in the marginal denticulation and
platform shape, and only differs in having a larger size and longer blade and free blade.
The longer blade and free blade may be intraspecific difference. This species, for a long
time, was only reported in North America. The occurrence of this species in the Hongyan
(Du et al., 2020), Potou and Madoupo sections on the Baoshan Block indicates that it is
also present in Sevatian strata of eastern Tethys and hence is likely a more globally
distributed species.

Occurrence—Sevatian (M. bidentata Zone) in the Nanshuba Formation of the Madoupo
section and in the Dashuitang Formation of the Potou section, China (this study). Sevatian
in the Nanshuba Formation of the Hongyan section (Du et al., 2020). Sevatian to early
Rhaetian? at Kennecott Point on Queen Charlotte Islands, Canada (Carter & Orchard,
2007). Middle Alaunian in the Pardonet Formation of Pardonet Hill, British Columbia,
Canada (Orchard, 1991b).

Stratigraphic range—Middle Alaunian to Sevatian.

Epigondolella aff. englandi Orchard, 1991b

Figures 4X–4LL, 5CC–5EE
2019 Mockina englandi (Orchard, 1991a); Wang et al., p. 87, figs. 6.2–6.3.

Materials—Five specimens form POT1, one specimen from POT8, two specimens from
MDP7, one specimen from MDP10.

Description—The P1 elements are characterized by a long free blade and a relatively short
platform, as well as the symmetrically arranged marginal denticles. The platform is
commonly ovoid and sub-symmetrical. The posterior platform is pointed. The anterior-
most pair of marginal denticles are the highest, and the following pairs of marginal
denticles decrease in height and are more posteriorly inclined and outwardly projected.
The blade is very high and comprised of six to seven highly fused denticles which are low at
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both ends and hence gradually transition to the low carina on the platform. The free blade
is nearly as long as half of the element. The carinal nodes are discrete and extend to or
within the posterior platform edge. There are two to three carinal nodes behind the
anteriorly located cusp. The anterior groove beneath the blade is widely opened. The pit is
strongly anteriorly shifted. The keel end is commonly pointed and posteriorly prolonged,
and rarely keeps remnant secondary keels which are weakly and asymmetrically bifurcated.
The form with a weakly bifid keel end bears three pair of marginal denticles, which may
represent an intermediate form between an ancestor and the E. aff. englandi.

Comparison—Epigondolella carinata bears two and one anterior marginal denticles
respectively on the outer platform and the inner platform. Ancyrogondolella equalis has a
bifurcated keel end and a rectangular platform, and its marginal denticles are not
asymmetrically arranged.

Remarks—The P1 elements resemble E. englandi, but are distinguished from the latter by
the development of a longer blade and free blade, and by having more numerous posterior
marginal denticles or a weakly bifurcated keel end; however, these probably have an
affinity to those of E. englandi. Wang et al. (2019) presented two specimens of E. englandi
which are also from Baoshan block that have longer blade and free blade than the holotype
of E. englandi,. Therefore, this form of P1 elements is widely distributed in the Sevatian of
the Baoshan block; indicating the occurrence may be geographically limited and hence this
type of conodont might be a subspecies of E. englandi.

Occurrence—Sevatian (M. bidentata Zone) of the Dashuitang Formation and the
Nanshuba Formation, China (in this study). Sevatian of the Dashuitang Formation in the
Hongyan Section, Baoshan city, China (Wang et al., 2019).

Stratigraphic range—Sevatian.

Epigondolella passerii (Rigo and Du, 2022)

Figures 4A–4S
1980 Epigondolella postera Kozur and Mostler; Krystyn, pl. 13, figs. 17, 18.
?1990 Epigondolella postera; Wang and Wang, pl. 1, fig. 10.
2003 Mockina cf. carinata (Orchard); Channell et al., fig. 3A/12.
2022 Mockina passerii n. sp. Rigo and Du; Jin et al., figs. 4.10–4.12.

Materials—10 P1 elements.

Description—The slender P1 elements have a thin and biconvex platform with a
pronounced constriction after a pair of highest anterior marginal denticles. The platform
end is pointed. The anterior platform possesses two to three denticles on the outer margin
and one to two denticles on the inner margin. The posterior platform is narrower than the
anterior platform and bears a pair of unevenly developed and outwardly projected
denticles on each margin. The blade is high and longer than half of the element, consisting
of seven to eight highly fused denticles and hence forming a crest shape and gradually
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transitioning to the cusp. The cusp is located on the anterior platform and is generally
followed by two to three posteriorly inclined carinal nodes. The posterior carina extends to,
beyond or within the platform end. The pit is situated under the anterior platform in a
narrow keel. The keel end is posteriorly prolonged and pointed.

Comparison—Epigondolella serrulata possesses more marginal denticles on the platform
and a weaker constriction after a pair of highest anterior marginal denticles. The anterior
platform of E. englandi possesses only one pair of unevenly developed marginal denticles
on each side. E. aff. englandi has sub-symmetrically arranged marginal denticles and an
oval platform with no constriction. E. carinata has no or very weaker constriction on the
middle part of the platform.

Occurrence—Lower Sevatian (M. bidentata Zone, this study) in the Dashuitang Formation
and the Nanshuba Formation of Potou section, Baoshan city, China. Sevatian at
Sommeraukogel of Austria (Krystyn, 1980). Sevatian in the Dashuitang Formation of
Hongyan-B section, Baoshan city, SW China (Jin et al., 2022).

Stratigraphic range—Sevatian.

Genus Mockina Kozur, 1990

Type species—Tardogondolella abneptis postera Kozur & Mostler, 1971 from the middle
Norian of Sommeraukogel, Austria.

Remarks—Compared with Epigondolella, Mockina is characterized by nearly smooth
lateral posterior platform margins which may sparsely develop small nodes.

Mockina bidentata (Mosher, 1968).

Figures 5FF–5II, 6A–6JJ, 6DDD, 7U–7CC
1958 Polygnathus abneptis n sp.; Huckriede, p. 156, pl. 14, figs. 32, 58.
1968a Epigondolella bidentata n. sp.; Mosher, p. 936, pl. 118, figs. 31–35.
1972 Metapolygnathus bidentatus (Mosher); Kozur, pl. 7, figs. 3–9.
1972 Epigondolella bidentata Mosher Kozur & Mostler, pl. 4, figs. 3–5.
1980 Metapolygnathus bidentatus, Kovács & Kozur, pl. 15, fig. 1.
1980 Epigondolella bidentata Mosher, Krystyn, pl. 14, figs. 1–3.
1983 Epigondolella bidentata population, Orchard, figs. 14 O–Q, S, W, X, figs. 15W, X.
1984 Epigondolella bidentata; Meek 1984, pl. 1, figs. 1–4.
1985 Epigondolella bidentata; Wang & Dong, p. 127–128, pl. 1, figs. 1–3, 26.
1991b Epigondolella bidentata; Orchard, p. 307–308, pl. 4, fig. 12.
2003 Mockina bidentata (Mosher); Channell et al., pl. A2, figs. 44, 46–48, 51, 54; pl. A3,
figs. 3, 4, 6, 7, 9, 25, 27, 28, 37, 39, 41, 42, 47, 48, 50, 54, 56, 71, 72, 74–79.
2005 Epigondolella bidentata; Bertinelli et al., fig. 4/5.
2005 Epigondolella bidentata; Rigo et al., fig. 4/6.
2005 Epigondolella ex gr. bidentata Orchard; Hornung, p. 111, pl. 1, fig. e.
2007 Mockina bidentata; Moix et al., p. 294, pl. 2, figs. 2, 3.
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Figure 7 SEM images of conodonts from the Nanshuba Formation of the Madoupo section.
(A–O, DD) Mockina zapfei (Kozur, 1973); A–C, D–F, G–I, J–L, M–O, DD, catalog numbers are
MDP8_i040, MDP8_i061, MDP8_i109, MDP8_i039, MDP8_i043 and MDP10-4402, respectively. (P–T)
Mockina sp. A; P–R, MDP8-031; S, MDP8-003; T, MDP8-032. (U–CC) Mockina bidentata (Mosher,
1968); U–V, W–X, Y–Z, AA, BB, CC, catalog numbers are MDP8_i044, MDP7_i115, MDP7_i116,
MDP10-4503, MDP10-5207 and MDP7-3203, respectively. (EE–FF) ?Mockina medionorica Kozur, 2003,
MDP8-011. Full-size DOI: 10.7717/peerj.14517/fig-7
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2007 Epigondolella bidentata; Carter & Orchard, pl. 2, figs. 14, 22–25.
2007a Epigondolella bidentata; Orchard et al., figs. 8.10, 8.11, 8.13, 8.17–8.20.
2007b Epigondolella bidentata; Orchard et al., pl. 1, fig. 22.
2007 Epigondolella bidentata; Krystyn et al., pl. 1, figs. 5, 6; non pl. 1, figs. 7–14.
2009 Epigondolella bidentata; Rožič et al., fig. 9e.
2010 Mockina bidentata; Giordano et al., figs. 3/1, 3/2.
2012 Mockina bidentata; Mazza et al., p. 120, pl. 7, fig. 7.
2012 Epigondolella bidentata; Gallet et al., fig. 3.1.
2016 Mockina bidentata; Rigo et al., fig. 3/3.
2016 Mockina bidentata; Karádi, Pelikán & Haas, 2016, pl. 1, fig. 8; pl. 4, fig. 4.
2018 Mockina bidentata; Yamashita et al., p. 183, figs. 8.4, 8.5.
2020 Mockina bidentata; Karádi et al., fig. 5 S.
2020 Mockina bidentata; Du et al., figs. 3.6, 3.15.
2021 Mockina bidentata; Du et al., figs. 3.1, 3.2.
2021 Mockina bidentata; Zeng et al., figs. 1/b, 2/2b, 3/1n–1o, 4/3d.
2022 Mockina bidentata; Jin et al., figs. 4.13–4.15.

Materials—31 P1 elements.

Description—Platform is short and reduced and varies in width. One pair of denticles are
located on the anterior platformmargins, after which the platform changes from extremely
reduced to moderately reduced. The pair of marginal denticles are either both developed
on two sides of the unit or are both absent in the early juvenile element. The blade varies in
length and consists of four to nine denticles, which are fused to different degrees.
The denticles of the blade may be high in the middle and lower on both ends or high on the
anterior and gradually descending posteriorly. The cusp is located in a position parallel
with the line of marginal denticles and is followed by one to three additional carinal nodes.
The pit is situated beneath the cusp. The keel end is prolonged relative to the pit and
pointed. In lateral view, the basal edge is sub-straight or is slightly concave beneath the
transition between the blade and the platform. Two specimens from Madoupo section
(Figs. 5FF–5II) have a convex basal edge in lateral view and a broad platform.

Remarks—Specimens of variousM. bidentata present a possible evolutionary trend for this
species from the early or middle Sevatian to the late Sevatian. On the basis of different
features of the carina in M. bidentata, Moix et al. (2007) discerned two morphotypes of
M. bidentata, and these are also present in M. bidentata fauna from the Potou section.
One morphotype (Figs. 6W–6EE) resembles the holotype with a long anterior blade
consisting of many highly fused denticles and a long posterior carina of three nodes.
The highest occurrence of this morphotype (POT8) in the Potou section is below the FO of
P. andrusovi, which contrasts with its re-appearance within Mi. hernsteini-P. andrusovi
Zone observed by Moix et al. (2007). The second, somewhat smaller, morphotype with a
shorter blade consisting of less fused and few relatively big and wide denticles is below both
the occurrences of the other morphotype of M. bidentata and of the M. bidentata/
P. andrusovi transitional form and P. andrusovi in several Tethyan sections and on the
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Tavusçayırı Block (Moix et al., 2007). The occurrence level of this second morphotype of
M. bidentata in the Potou section (Figs. 6A–6H, 6L–6V) is similar to the inferred level
below theMi. hernsteini-P. andrusovi Zone.M. bidentata increases in size from the sample
layer 1 (POT1) to sample layer 8 (POT8), then reduces its size just below the occurrence of
M. bidentata/P. andrusovi transitional forms (from sampling layer POT11 to POT13).

At present, M. bidentata has been widely reported in the Tethys (Channell et al., 2003;
Krystyn et al., 2007; Moix et al., 2007; Giordano et al., 2010; Mazza, Rigo & Gullo, 2012;
Karádi et al., 2020; Du et al., 2020, 2021; Zeng et al., 2021; Jin et al., 2022), in North
America (Mosher, 1968; Orchard, 1983, 1991b; Orchard et al., 2007a, 2007b; Carter &
Orchard, 2007) and in Japan (Yamashita et al., 2018). All the illustrated specimens from
these publications display a narrow platform and straight or slightly concave basal edges in
lateral view, which conform to the holotype. It is noteworthy that three bidentate
specimens from theMadoupo section differ from the bidentate P1 elements from the Potou
section and from other M. bidentata in the Madoupo section by having distinct convex
rather than sub-straight basal edges in lateral view and possessing broader platforms (Figs.
5FF–5II); but more data are needed to confirm whether the different morphologies are
intraspecific.

Stratigraphic range—from lowermost Sevatian (M. bidentata Zone) to (middle?, Mi.
ultima Zone) Rhaetian.

Mockina elongata (Orchard, 1991b)

Figures 5A–5X
1991b Epigondolella elongata n. sp.; Orchard, p. 308, pl. 4, figs. 4–6, 15, 20, 21.
2005 Epigondolella elongata Orchard, 1991a; Rigo et al., fig. 4.4.
2018 Mockina elongata (Orchard, 1991b); Yamashita et al., p. 183, figs. 8.6, 8.7.
2022 Mockina mosheri morphotype B; Jin et al., fig. 4.8.

Materials—28 P1 elements from MDP8.

Description—The platform after the anterior marginal denticles gradually tapers to the
pointed platform end, to form a long elliptical outline. The smooth posterior platform is
relatively wider on the inner sider than the outer side, but both margins are convex in
outline. The length ratio of the platform to the element is about three fifths. The anterior
platform bears two or three high denticles on one margin and one higher denticle on the
other. The blade consists of six to seven high denticles with the basal part fused and the
upper part discrete. The anterior-most or posterior-most denticle of the blade may be
relatively smaller or lower, and thus the blade moderately or abruptly decreases to the low
carinal nodes on the platform. The low carina consists of four to five discrete posteriorly
inclined nodes, commonly extends beyond the platform end or aligns with the terminal
marginal denticle, and rarely has the posterior two carinal nodes fused with the terminal
marginal denticle. The cusp is usually higher than the adjacent carinal nodes and is
followed by three to four carinal nodes with the last one being the largest. The cusp located
on the anterior platform is approximately aligned with the middle position of the two to
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three marginal denticles. The keel extends along the platform and terminates at three fifths
along the posterior platform. The keel after the pit is straight to slightly curved. The keel
end is pointed or lanceolate and prolonged far from the pit. The pit is located below the
cusp at about the anterior third of the platform.

The juvenile forms are much smaller in size and have the same ratio of platform length
to the unit length. The carina of juvenile specimens consists of four high denticles (blade)
and four lower carinal nodes. The keel grows along the platform, and both have pointed
ends. The pit in the juvenile form is located beneath the anterior platform and surrounded
by a bulged loop.

Comparison—Mockina postera has a shorter platform, an apparent asymmetrical
posterior platform and a shorter posterior carina that never reaches the platform end.
M. matthewi has at least two anterior platform marginal denticles and a broader platform.
M. medionorica has a smooth platform end and a shorter posterior carina that also never
reaches the platform end. Orchardella? multidentata has more anterior marginal denticles
and a stronger posterior carina.

Remarks—All P1 elements have an elongate ellipsoid platform with two to three denticles
on one anterior platform margin, with one denticle on the other margin and with an
inornate posterior platform. The pit is anteriorly shifted, and prominent carinal nodes
usually extend to the posterior platform end or occasionally not. Although the holotype of
“Epigondolella” (= Mockina) elongata (Orchard, 1991b, pl. 4, figs. 15, 20, 21) has a
slenderer, longer platform and more posteriorly elevated carinal nodes than these P1
elements, the morphological features of the P1 elements match well with the description in
the “Diagnosis” ofM. elongata and resemble the paratype (Orchard, 1991b, pl. 4, figs. 4–6).

The occurrence ofM. elongata is global, as indicated by the occurrence of this species in
western Tethys (Rigo et al., 2005), in eastern Tethys (Jin et al., 2022; and this study), in the
Panthalassa (Yamashita et al., 2018) and in North America (Orchard, 1991b).

Occurrence—Lower Sevatian in the Madoupo section. Middle Alaunian in the British
Columbia, North America (Orchard, 1991b). Upper Alaunian in the Sasso di Castalda
section of southern Italy (Rigo et al., 2005). Lower Sevatian (M. bidentata Zone and
occurrence within radiolarians zone TR6B (Tnalatus robustus-Lysemelas olbia) through
TR7 (Lysemelas olbia) and disappearance in lower TR8A (Praemesosaturnalis
multidentatus) in the section Q of Japan (Yamashita et al., 2018). Sevatian in the
Dashuitang Formation of the Honyan-B section, Baoshan area, western Yunnan, China
(Jin et al., 2022).

Stratigraphic range—from middle Alaunian to lower Sevatian.

Mockina medionorica Kozur, 2003

Figures 5Y–5BB
1980 Metapolygnathus multidentatus (Mosher); Kovács & Kozur, pl. 14, fig. 5.
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1987 Metapolygnathus posterus (Kozur & Mostler); Vrielynck, p. 157–159, pl. 7, Figs.
10–15.
2001 Mockina postera (Kozur & Mostler); Ishida & Hirsch, p. 238, pl. 4, figs. 4, 6.
2002 Mockina postera; Hirsch & Ishida, pl. 1, fig. 3.
2003 Mockina medionorica n. sp.; Kozur, p. 70, pl. 1, figs. 5, 6.
2003 Mockina medionorica Kozur; Channell et al., pl. A3/14–15.
2021 Mockina medionorica; Karádi et al., p.16, fig. 7.13.

Materials—Two P1 elements.

Description—The P1 elements have an oval platform that possesses two and one marginal
denticles on each anterior platform side. The platform margins after the anterior marginal
denticles are smooth. The blade consists of seven half-fused denticles. Most of the blade is
free from the platform. The posterior two denticles of the blade decrease in height toward
the posterior and hence gradually descend to the low carina. The low carina consists of
four isolated nodes, with the last carinal node being largest and stopping before the smooth
platform end. The pit located under the anterior platform. The keel is pronged after the pit.
The keel end is pointed. In lateral view, the base is stepped upwards at the transition
between the blade and the platform and become sub-straight after the cusp.

Comparison—Mockina postera has an asymmetrical posterior platform and a pointed
platform end. M. elongata has a pointed platform end and longer carina after the cusp.
M. slovakensis differs from it by the blade abruptly descends to the low carina on the
platform.M. matthewi has two or more anterior marginal denticles on each platform side.

Remarks—Kovács & Kozur (1980, pl. 14, fig. 5) presented a specimen of Metapolygnathus
(Me.) multidentatus. However, the displayed specimen differs from Me. multidentatus by
the broader posterior platform, smooth platform end and a shorter posterior carina that
never extends to the platform end. It resembles M. matthewi by the two pairs of anterior
marginal denticles, broad platform, smooth posterior platform margins and the carina, but
differs from the latter by the keel end that is narrowly blunt with slight central incision.
This kind of keel end was described in the diagnosis ofM.medionorica. Karádi et al. (2021,
p. 16) assigned this specimen to M. medionorica and proposed that M. matthewi has the
broadest platform in the middle. Taking the broadest anterior platform and the centrally
incised keel end into consideration, the specimen ofMe. multidentatus in Kovács & Kozur
(1980) conforms more to M. medionorica.

Occurrence—Lower Sevatian in the Madoupo section. Alaunian in the Rudabánya hills,
Hungary (Kovács & Kozur, 1980). Upper Alaunian in Cammarata of Sicily, Italy (Vrielynck,
1987). Alaunian in the section of Hisaidani, southwestern Japan (Ishida & Hirsch, 2001;
Hirsch & Ishida, 2002). Alaunian of Silická Brezová, Slovakia (Kozur, 2003; Channell et al.,
2003). Lower Alaunian in the Dovško section of Slovenia (Karádi et al., 2021).

Stratigraphic range—from lower Alaunian to Sevatian.

Mockina zapfei (Kozur, 1973)
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Figure 8 SEM images of Mockina zapfei (Kozur, 1973) from the Nanshuba Formation (Sevatian) of
the Madoupo section in Baoshan, western Yunnan, China and its ontogenetic series. (A–T) Onto-
genetic series; A, B, early juvenile species, catalog numbers are MDP8_1802 and MDP8-1901, respec-
tively; C–E, F–H, late juvenile specimens, catalog numbers are MDP8-019 and MDP8_i108, respectively;
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Figures 3RR–3SS, 7A–7O, 7DD, 8A–8EE, 9A–9BB
1972 Metapolygnathus n. sp.; Kozur, pl.7, fig.1.
1972 Metapolygnathus aff. posterus (Kozur & Mostler); Kozur, pl. 7, fig. 2.
1973 Metapolygnathus zapfei Kozur & Mostler; Kozur, p. 18–20.
1979 Metapolygnathus zapfei Kozur; Gaździcki et al., pl. 5, fig. 15.
1983 Epigondolella postera population (Kozur & Mostler); Orchard, p. 186, figs. 15 P–R.
1985 Epigondolella multidentata Mosher; Wang & Dong, p. 128, pl. 1, figs. 9, 16.
1990 Epigondolella postera; Buduro & Sudar, pl. 5, fig. 6–8.
?1991a Epigondolella postera; Orchard; pl. 4, figs. 17, 18.
2000 Epigondolella slovakensis Kozur & Mock; Martini et al., pl. V, fig. 13, 14.
2003Mockina zapfei; Channell et al., pl. A2, figs. 43, 45, 53, 55; pl. A3, figs. 5, 24, 32, 33, 34,
36, 43, 51, 52, 53.
2005 Epigondolella ex gr. bidentata Orchard; Hornung, p. 111, pl. 1, fig. B (only).
?2005 Epigondolella serrulata Orchard, 1991a; Rigo et al., fig. 4.3.
2021 Mockina zapfei; Du et al., fig. 3.12.
2022 Mockina zapfei; Jin et al., fig. 4.6.

Materials—60 P1 elements from MDP8, one P1 element from MDP10.

Description—The P1 elements have a long platform which spans more than half of the
entire element, and is always with one side of the posterior platform margin deflecting
toward the other side near the platform end. The platform width is from slender to broad,
posteriorly elongating during the growth and thus developing a longer posterior platform
in adult forms or late forms. The anterior platform bears one to three high denticles on one
lateral margin and always one strong and highest denticle on the other. The posterior
platform margin is commonly smooth and asymmetric, with the deflected side of the
platform wider than the other side. The blade spans nearly half of the element and
commonly consists of five to eight highly fused denticles in adult elements, but with most
denticles free from the platform. The denticles of the blade are commonly similar in height
except the anterior-most one or two denticles which are smaller or lower. The posterior
one to two denticles of the blade may decrease in height or size, or commonly in adult or
late adult specimens the posterior-most denticle may be abrupt. The cusp is located on the
anterior platform and is commonly followed by two or more carinal nodes which increase
in height toward the posterior and extend to or within the posterior platform end. The keel
is wide around the pit and tapers posteriorly. The keel end is commonly lanceolate in shape
and posteriorly prolonged; it deflects toward one side, and terminates at the posterior
fourth of the platform. Besides these common morphological features, the abundant

Figure 8 (continued)
I–K, early adult species, MDP8-902; L–N, adult species, MDP8_i035; O–Q, R–T, late adult species,
catalog numbers are MDP8_i057 and MDP8_i055, respectively. (U–Y) The platform end of the P1
element develops no terminal denticle; U–W, adult species, MDP_i037; X–Y, late juvenile species,
MDP8-2909. (Z–EE) the P1 elements develop small or tiny nodes on the platform end and one of the
posterior lateral platform margins; Z–BB, CC–EE, catalog numbers are MDP8_i054 and MDP8-005,
respectively. Full-size DOI: 10.7717/peerj.14517/fig-8
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Figure 9 SEM images of Mockina zapfei (Kozur, 1973) from the Nanshuba Formation (Sevatian) of
the Madoupo section in Baoshan, western Yunnan, China and its ontogenetic series. (A–N)
Ontogenetic series; A, juvenile species, catalog no. is MDP7-4101; B, late juvenile species, MDP8-008;
C–E, F–H, I–J, K, L–N, adult specimens, catalog numbers are MDP8-1301, MDP8-007, MDP8-801,
MDP8-020 and MDP8-028, respectively. (O–Q) The P1 element only has one pair of anterior marginal
denticles, MDP8-022. (R–Y) Simple ontogenetic series; R-S, juvenile species, MDP8_i052; T–V, W–Y,
adult species, catalog no. is MDP8_i050 and MDP8_i046, respectively. Z–BB, variant species,
MDP8_i038. Full-size DOI: 10.7717/peerj.14517/fig-9
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samples of this taxa collected from MDP8 also allows us to reconstruct the ontogenetic
series and to study intraspecific variations, which are presented mainly in Figs. 7–9.

The most common form (Figs. 3RR–3SS, 7A–7C, 8A–8T) resembles the holotype in
having a wide platform with one posterior margin deflecting toward the other side near a
broadly rounded platform termination. The ontogenetic series of this form (Figs. 8A–8T)
reveals that the platform simultaneously posteriorly elongates and laterally expands during
the growth. The posterior platform is narrower than the anterior platform during the early
growth stage (= in juvenile specimens) and gradually laterally expands until the width of
posterior platform is similar to or slightly wider than the anterior platform as the element
grows. An apparent identification feature of this form through all the growth stages is that
a sudden deflection from the sub-straight platform margin to the pointed platform end
occurs near the platform termination, which becomes more distinct as the element grows
larger.

The other common form (Figs. 9A–9Y) is characterized by a smooth, rather than
sudden, deflection of one platform margin from the anterior to the posterior. Commonly,
the platform after the anterior marginal denticles forms a concave outer margin and a
convex inner margin which may culminate in a sub-straight edge as the element laterally
expands during the late growth stage. The ontogenetic series (Figs. 9A–9L, 9R–9Y) all
show a gradual bending of the lateral platform margins after the anterior marginal
denticles and the curvature of the carina after the cusp. The outer anterior margin of this
form may bear one to three denticles, which increase in height toward the posterior.

Variations observed in rare morphotypes include: (1) a narrow-rounded platform end
rather than typical pointed platform end and relatively sub-straight posterior carina and
keel (Figs. 8U–8Y); (2) development of small nodes on the deflected posterior margin and
platform end to form a denticulated platform termination (Figs. 8Z–8EE); (3) anteriorly
increased marginal denticles with one lateral margin bearing four high denticles and the
other margin having two denticles (Figs. 9Z–9BB); (4) retention of a weakly
asymmetrically bifurcated keel and many fused and continuously aligned lower carinal
nodes that extend to the sub-middle platform end (Figs. 7D–7F); and (5) possession of two
denticles on each anterior platform margin (Figs. 7G–7O, 7DD).

Comparison—Adult M. zapfei is easy to differentiate from M. postera (Kozur & Mostler,
1971) by its larger size, longer platform, and distinct curved carina that extends to or is
aligned with the pointed platform end.M. zapfei in its early growth stage is very similar to
M. postera in that the curvature of the carina and the deflected posterior platformmargin is
not as pronounced as those for its adult elements. However, the juvenile specimens of
M. zapfei recovered from the Madoupo section either have a carina that extends to the
platform end or have an apparently curved posterior platform and posterior carina; and
these features contrast with the straight posterior carina that never reaches the posterior
platform end of M. postera. Because the juvenile M. zapfei specimens are easily confused
with M. postera, caution should be exercised when identifying them. The M. zapfei
morphotype with a narrowly rounded platform end (Figs. 8U–8Y) resembles
M. slovakensis, but is differentiated by its broad deflected posterior termination and the
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posterior blade which fuses with a low carinal node on the platform and hence has a
moderate rather than an abrupt step down to the platform. That morphotype may be an
intermediate form between M. slovakensis and M. zapfei. The variant morphotype with a
bifid keel (Figs. 7D–7F) differs from the M. aff. zapfei in Yamashita et al. (2018) by the
weakly bifurcated keel end, the upward arched lateral profile as well as more anterior
marginal denticles.

Remarks—The most common form of the P1 elements almost perfectly matches the
description and holotype of M. zapfei presented by Kozur (1972, 1973). Other common
forms and rare morphotypes also display the common characteristics as described by
Kozur (1972). No additional detailed descriptions of M. zapfei with figures have been
presented in papers since the report of the holotype (Channell et al., 2003; Rigo et al., 2016;
Karádi et al., 2020; Jin et al., 2022). The only description of M. zapfei other than the
holotype has no corresponding figures (Mazza, Rigo & Gullo, 2012). The abundant
specimens collected from level MDP8 allow us to present a detailed illustrated description
as well as the field of variation for this species. Intraspecies variations are mainly in the
denticulation of anterior platform margins, in the characteristics of the deflection in one
posterior platform margin and the posterior carina, and in the features of posterior
platform termination or end. M. zapfei has been discovered in North America (Orchard,
1983), in the Tethyan realm (Kozur, 1972, 1973;Wang & Dong, 1985; Channell et al., 2003;
Hornung, 2005; Balini et al., 2010; Mazza, Rigo & Gullo, 2012; Du et al., 2021; Jin et al.,
2022; this study), in Timor (Martini et al., 2000), and probably in Japan (Yamashita et al.,
2018), thereby indicating a global distribution.

Occurrence—Sevatian in the Nanshuba Formation of the Madoupo section, Baoshan city,
China. Uppermost Alaunian in the Dashuitang Formation of the Dapingdi section (Wang
& Dong, 1985) and the Hongyan-B section, Baoshan city, China (Jin et al., 2022). Sevatian
of the Pizzo Mondello section in Sicily, Italy (Du et al., 2021). Sevatian in the Rappoltstein
section of Rappoltstein Block, southern Germany (Hornung, 2005). Sevatian in the Trench
section of Silická Brezová, Slovakia (Channell et al., 2003). Middle? Alaunian in the Noe
Bihati section of West Timor (Martini et al., 2000). Middle Alaunian in the Pardonet
Formation of the McLay Spur section in British Columbia, Canada (Orchard, 1983). Upper
Alaunian of Sommeraukogel, Austria (Kozur, 1972, 1973).

Stratigraphic range—Middle Alaunian to middle Sevatian.

Mockina sp. A

Figures 7P–7T
2005 Epigondolella postera (Kozur & Mostler, 1971); Bazzucchi et al., fig. 11.1.
2016 Mockina zapfei (Kozur); Rigo et al., fig. 3.1.

Materials—Three P1 elements from MDP8.

Description—The P1 elements are characterized by a deflected posterior platform relative
to the anterior platform, which is smooth and bears a rounded platform end. The P1
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elements are widest on the anterior platform where the marginal denticles grew. The outer
platform begins to taper after two marginal denticles, while the inner platform starts to
slightly and gradually expand until or near the posterior termination and then tapers to the
posterior termination. The anterior platform possesses two high denticles and one highest
denticle respectively on the two lateral margins. The blade generally consists of five to six
half-fused denticles, with some denticles being very wide. The denticles of the blade is high
in the middle and lower on both ends and hence gradually or moderately descends to the
low carina toward the posterior. The low carina is commonly comprised of five nodes.
The cusp located on the anterior platform is slightly anterior to the position of the
posterior-most marginal denticles, and is followed by three carinal nodes. The posterior
carina deflects inward and extends to or beyond the platform termination. The pit is
located beneath the cusp and within a wide keel. The keel end can be slightly wavy, blunt or
narrowly rounded. In lateral view, the basal edge is upwardly stepped beneath the
transition between the blade and the low carina.

Comparison—Epigondolella carinata develops a terminal denticle on the platform end and
lateral marginal denticles on two sides of the posterior platform.M. elongata has a pointed
platform end and a narrower posterior platform. M. slovakensis has a blade that is abrupt
in the posterior end and consists of highly-fused denticles. M. medionorica has similar
rounded or narrowly rounded posterior platform end and denticulation of the anterior
platform, but can be distinguished by the straight posterior carina which never reaches the
posterior end as well as the sub-symmetric posterior platform. M. postera has a pointed
platform end, an asymmetric posterior platform and a straight carina that doesn’t extend
to the posterior platform end.

Remarks—The P1 elements are similar with M. zapfei (Figs. 8U–8Y). But the deflection
pattern presented in the three specimens is different from that of M. zapfei. The platform
margin after two anterior marginal denticles smoothly tapers to the platform end in the P1
elements, contrasting with the corresponding sub-straight margin of M. zapfei. The other
platform margin after one high anterior marginal denticle always presents a distinct
deflection at the posterior fourth of the platform inM. zapfei, which is not displayed in the
P1 elements. The P1 elements have the whole posterior platform variably deflected toward
the inner side relative to the anterior platform, whereas most specimens of M. zapfei have
only one posterior margin deflected toward the outer side near the platform end.

Occurrence—Lower Sevatian (M. bidentata Zone in this study) in the Nanshuba Formation
of the Madoupo section, China. Sevatian 1 in the Scisti Silicei Formation of the Pignola-
Abriola, Italy (Bazzucchi et al., 2005; Rigo et al., 2016).

Stratigraphic range—Sevatian.

Genus Parvigondolella Kozur & Mock, 1972

Type species—Parvigondolella andrusovi Kozur & Mock, 1972 from upper Sevatian of
Bohúňovo, Slovakia.
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Parvigondolella andrusovi Kozur & Mock, 1972
Figures 6TT–6UU
1972 Parvigondolella andrusovi n. gen. n. sp.; Kozur & Mock, p. 5, pl. 1, figs. 11, 12.
1974 Parvigondolella andrusovi Kozur & Mock, 1972; Kozur & Mock, pl. 1, figs. 11, 12.
1979 Parvigondolella andrusovi; Gaździcki et al., pl. 5, figs. 8, 9.
1980 Parvigondolella andrusovi; Kovács & Kozur, pl. 15, fig. 3.
1980 Epigondolella bidentata Mosher; Krystyn, pl. 14, figs. 5, 6.
1990 Epigondolella bidentata Mosher, 1968; Budurov & Sudar, 1990 pl. 5, fig. 12.
2003 Parvigondolella andrusovi; Channell et al., pl. A2, figs. 50, 60; pl. A3, figs. 1, 2, 73,
81, 82.
2005 Parvigondolella andrusovi; Bertinelli et al., fig. 4/6.
2005 Parvigondolella andrusovi; Rigo et al., figs 5.5, 5.6.
2007 Epigondolella sp; Pálfy et al., 2007 fig. 6.14.
2009 Parvigondolella andrusovi; Rožič et al., fig. 9/g.
2010 Parvigondolella andrusovi; Giordano et al., fig. 3.4.
2010 Parvigondolella andrusovi; Balini et al., pl. 4, fig. 10.
2012 Parvigondolella andrusovi; Mazza et al., p. 126, pl.7, fig. 14.
2012 Parvigondolella andrusovi; Gale et al., fig. 4/O.
2018 Parvigondolella andrusovi; Yamashita et al., p. 189, fig. 10.4.
2020 Parvigondolella andrusovi; Karádi et al., figs. 2D–E, 5T, U.
2021 Parvigondolella andrusovi; Du et al., fig. 3. 6.
2021 Parvigondolella andrusovi; Zeng et al., figs. 1/e, 4.3.

Material—One specimen from POT13.

Description—A single blade consists of seven partially fused denticles. The most anterior
denticle is small and erect; other denticles incline posteriorly and decrease in height toward
the posterior end. The cusp is penultimate and wider than other denticles, and located at
the posterior third of the element. The pit is located below the cusp. The groove is
anteriorly shallow and narrow; while the keel end is prolonged and narrowly rounded.

Comparison—It differs from Parvigondolella sp. (described below) in its widest cusp.
M. bidentata has a reduced and short platform with a pair of marginal denticles or is small
in size in early juvenile elements. P. lata bear a terminal cusp and fewer denticles.
P. ciarapicae has a terminal cusp which is the largest denticle of the blade.

Remarks—The P1 element has seven denticles, a widest cusp which is situated at the
posterior third of the element, and a base with distinct pit, posterior keel and shallow
groove. These morphological features match well with the illustration of P. andrusovi by
Kozur & Mock (1972, pl. 1, fig. 12).

Occurrence—Upper Sevatian of Silická Brezová, Slovakia (Kozur & Mock, 1972, 1974;
Gaździcki, Kozur & Mock, 1979; Kovács & Kozur, 1980). Sevatian of Sommeraukogel,
Austria (Krystyn, 1980). Upper Sevatian of the Kavur Tepe section, Antalya, Turkey and
the Scheiblkogel section in Austria (Channell et al., 2003). Sevatian of the Pizzao Mondello
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section in Italy (Balini et al., 2010; Mazza, Rigo & Gullo, 2012). Upper Sevatian in the
Calcari con Selce Formation of the Pignola-Abriola section, Mt. S. Enoc section and
Mt. Volturino section in the Lagonegro Basin, Italy (Giordano et al., 2010; Karádi et al.,
2020). Sevatian to the Rhaetian in the Calcari con Selce Formation—transitional interval of
the Sasso di Castalda section in the Lagonegro Basin, Italy (Bertinelli et al., 2005; Rigo et al.,
2005; Giordano et al., 2010). Upper Sevatian to the Rhaetian of the Mt. Kobla section in the
Slovenican Basin (Rožič, Kolar-Jurkovšek & Šmuc, 2009; Gale et al., 2012). Upper Sevatian
of Inuyama area, Japan (Yamashita et al., 2018). Sevatian in the Nanshuba Formation of
the Xiquelin section in Baoshan, China (Zeng et al., 2021).

Stratigraphic range—Upper Sevatian to Rhaetian.

Parvigondolella? vrielyncki Kozur & Mock, 1991

Figures 6KK–6NN
1980 Epigondolella bidentata Mosher; Krystyn, pl. 14, fig. 4.
1991 Parvigondolella? vrielyncki sp. nov. Kozur and Mock, p. 276–277.
?2003 Parvigondolella vrielyncki; Channell et al., pl. A2, fig. 49.
?2003 Parvigondolella andrusovi Kozur and Mock; Channell et al., pl. A2, fig. 59, pl. A3,
figs. 72, 73, 80.
?2007a Parvigondolella sp. B; Orchard et al., p. 363, fig. 7.17.
?2007b Parvigondolella sp. C; Orchard et al., pl. 1, fig. 14, 15.
?2018 Parvigondolella aff vrielyncki; Yamashita et al., p. 189, fig. 10.5.

Materials—One P1 element from POT1 and one P1 element from POT13.

Description—The P1 elements have a single long blade composed of 10 denticles.
The anterior-most one denticle is small and erect, the others slightly inclined and the
inclination gets bigger posteriorly. The anterior blade is large and high and decreases in
height toward the posterior end. The cusp is the antepenultimate denticle, which is slightly
wider than other denticles and situated at the posterior third of the unit. The height of the
cusp is lower than its anterior denticles and higher than the posterior two closely
positioned denticles. The basal furrow is narrow and shallowly excavated, extends to both
ends of the unit, and expands laterally near the position beneath the cusp. In lateral view,
the anterior basal edge is straight, while the posterior basal edge slightly bends downward,
thereby forming a weakly arched shape.

Remarks—The groove in the P1 elements opens and widens along the entire unit to form a
narrow and shallow furrow. However, the bases inM. bidentata, transitional form between
M. bidentata and P. andrusovi (Figs. 6PP–6QQ, 6VV–6AAA), and P. andrusovi are not
apparently opened, widened and excavated; thereby enabling the keel, the pit (or basal
cavity) and the narrow groove to be still clearly discerned. Kozur & Mock (1972) did not
illustrate lower view of the holotype of P. andrusovi nor did they provide a clear
description or diagnosis of that portion. Because most later conodont workers regarded the
basal cavity of P. andrusovi as not indistinct, we also adopted this feature of identification.
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Alternatively, it is possible the two specimens are a morphotype of P. andrusovi. This
difficulty in comparing to other taxa indicates the necessity to emphasize the development
of the lower side of conodonts in that this view reveals the evolutionary process and thus
plays a decisive role in separating the species and genera for Late Triassic conodont
elements. Because species of genus Parvigondolella have a similar basal field as
M. bidentata, which contrasts with the wholly covered basal furrow in these two
specimens, then it is interpreted that the two specimens do not belong to genus
Parvigondolella.

Table 3 Reported conodont form species in the Mockina bidentata Zone.

E. abneptis Huckriede (1958), Mosher (1968), Krystyn (1980), Wang & Dong (1985)

E. englandi Orchard (1991b), Orchard et al. (2007b), Krystyn et al. (2007), Onoue et al. (2018),Wang et al. (2019), Du et al. (2020),
Karádi et al. (2021)

E. aff. englandi Wang et al. (2019, figs. 6.2–6.3), This study

E. carinata Orchard (1991b), Carter & Orchard (2007), Orchard et al. (2007b), Du et al. (2020), this study

E. passerii Krystyn (1980, pl. 13, figs. 17 and 18), Jin et al. (2022), this study

E. spiculata Yamashita et al. (2018)

M. elongata Yamashita et al. (2018), Jin et al. (2022, fig. 4.8), this study

M. longidentata Kovács & Kozur (1980)

M. mosheri Kovács & Kozur (1980), Krystyn et al. (2007), Yamashita et al. (2018), Du et al. (2020), Karádi et al. (2021), Jin et al.
(2022)

M. medionorica Kovács & Kozur (1980, pl. 4, fig. 5), this study

M. postera Kozur & Mostler (1972), Kovács & Kozur (1980), Krystyn (1980), Wang & Dong (1985), Gullo (1996), Channell et al.
(2003), Muttoni et al. (2004), Dong & Wang (2006), Rožič, Kolar-Jurkovšek & Šmuc (2009)

M. sakurae Zeng et al. (2021)

M. slovakensis Gullo (1996), Giordano et al. (2010), Muttoni et al. (2004), Dong & Wang (2006), Rigo et al. (2018), Yamashita et al.
(2018), Du et al. (2021), Jin et al. (2022)

M. cf. slovakensis Channell et al. (2003)

M. zapfei Channell et al. (2003), Hornung (2005), Giordano et al. (2010), Rigo et al. (2018), Du et al. (2021), this study

M. cf. zapfei Bazzucchi et al. (2005), Rigo et al. (2016)

N. steinbergensis Mosher (1968), Kovács & Kozur (1980), Krystyn (1980), Orchard (1991b), Channell et al. (2003), Hornung (2005),
Orchard et al. (2007b), Rožič, Kolar-Jurkovšek & Šmuc (2009), Mazza, Rigo & Gullo (2012), Onoue et al. (2018), Du
et al. (2020)

P.? vrielyncki Channell et al. (2003), Rigo et al. (2018), Du et al. (2021), this study

P. aff. vrielyncki. Yamashita et al. (2018)

P. lata Du et al. (2021)

P1 elements of
Parvigondolella

Orchard et al. (2007b), Orchard (1991b), e.g.

Conical P1 elements Channell et al. (2003), Du et al. (2021), this study

Transitional forms from
M. bidentata

Karádi et al. (2020), Du et al. (2021), Zeng et al. (2021), this study

M. carinata? in Du et al. (2020), E. triangularis? in Channell et al. (2003), O.? multidentata in Kovács & Kozur (1980),M. aff. tozeri and E. uniformis? in
Onoue et al. (2018), other indeterminated P1 elements.
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On the other hand, even though Krystyn (1980) only presented a lateral view for what
became the holotype of P.? vrielyncki by Kozur & Mock (1991), the diagnosis mentioned a
narrow basal furrow and an indistinct basal cavity and Kozur & Mock (1991) were also
uncertain on its assignment to a genus. The basal features of these P1 elements conform to
the description of the holotype of P.? vrielyncki. Moreover, the straight edge on the anterior
and slightly downwardly bending posterior edge in lateral view of the P1 elements conform
to the holotype of P.? vrielyncki (Krystyn, 1980, pl. 14, fig. 4). Therefore, on the basis of the
basal furrow, lateral profile of basal edge and 10 denticles, the two P1 elements are
interpreted to be P.? vrielyncki. Four specimens presented by Channell et al. (2003, fig. A2,
59; figs. A3, 72, 73, 80) and two specimens displayed by Orchard et al. (2007a, pl. 1, figs. 14,
15; 2007b, fig. 7.17) have very similar blades and lateral views as the two P1 elements, and
all bear an antepenultimate cusp. However, those authors did not illustrate the basal
cavities of those specimens, therefore a full comparison is not possible. Another P. aff.
vrielyncki identified in Yamashita et al. (2018) has a crest-shaped blade and arched lateral
view; but again, no lower view was presented, therefore it is not certain whether their P. aff.
vrielyncki is identical with these two P1 elements.

Occurrence—Sevatian of the Potou section in Baoshan city, China. Alaunian 2/IV (= upper
Halorites macer Zone, which had been regarded as lower Sevatian by Kozur &Mock, 1991)
of western Timor, Indonesia (Krystyn, 1980, pl. 14, fig. 4).

Stratigraphic range—Upper Alaunian to Sevatian.

DISCUSSION
Conodont fauna in the Mockina bidentata Zone of the Sevatian are probably very diverse.
There are at least 19 forms of P1 elements (see Fig. 2, Table 2), which belong to six form
genera within the M. bidentata Zone of the Potou section and the Madoupo section. This
reveals a high taxonomic diversity and might suggest a peak in diversification of conodonts
during the early Sevatian. In the first part of this article, the review of Sevatian conodont
biostratigraphy gives a detailed account of the range of reported conodont species within
theM. bidentata Zone. Our current compilation, which is only preliminary, of the reported
conodont form species within the M. bidentata Zone (Table 3) suggests that there may be
more than 30 different forms of P1 elements occurring in the M. bidentata Zone. Many
known species that occurred during middle Norian actually range upward into the
Sevatian, such as E. spiculata, M. elongata,M. medionorica,M. postera and E. abneptis with
no-bifid keel end. It can be inferred that other middle Norian conodonts may have
survived into the Sevatian. The occurrence of ornated P1 elements (E. abneptis,
E. triangularis?, E. uniformis? and M. aff. tozeri) in the M. bidentata Zone also implies a
more diverse conodont fauna was present in the Sevatian world than previously thought.
More new species or new forms of P1 elements have been discovered in the M. bidentata
Zone in recent years, which indicates that the peak of diversity that Plasencia, Aliaga & Sha
(2013) assigned as end-Norian actually occurred during theM. bidentata Zone of the early
Sevatian.
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However, this peak in diversity during the M. bidentata Zone was followed by a biotic
crisis during the middle of the Sevatian. The termination of conodont species ranges
within the Potou section imply an apparent rapid decline in conodont diversity above
sample layer POT9, and most of the higher horizons yielded only single species. This
implies that there was a conodont crisis (= major decline in diversity) in the uppermost
M. bidentata Zone or near the boundary between M. bidentata Zone and P. andrusovi
Zone. The zonal boundary interval is characterized by transitional forms between
M. bidentata and P. andrusovi, by the disappearance of most segminiplanate gondolellid
conodonts, and by the appearance of species of Parvigondolella (Parvigondolella sp.).

Indeed, also within the western Tethys regions, only very few conodont species
occur within the P. andrusovi Zone. The associated assemblages are commonly P. lata-
N. steinbergensis (Gaździcki, Kozur & Mock, 1979), single M. bidentata (Rigo et al., 2005),
M. slovakensis-M. bidentata-N. steinbergensis in the Pignola-Abriola section and P. lata-M.
bidentata-P. vrielyncki in Mt. S. Enoc and Mt. Volturino sections (Giordano et al., 2010),
M. slovakensis-M. zapfei (Channell et al., 2003) withM. bidentata-N. steinbergensis (Balini
et al., 2010; Mazza, Rigo & Gullo, 2012), and M. bidentata-M. ex gr. postera-N.
steinbergensis (Rožič, Kolar-Jurkovšek & Šmuc, 2009; Gale et al., 2012). These global
records suggest that only four segminiplanate conodont species of M. slovakensis,
M. bidentata, M. zapfei (with the exception of the unclear M. ex gr. postera) and
N. steinbergensis survived from theM. bidentata Zone into the P. andrusovi Zone and that
segminate conodonts (P. lata, P. ciarapicae etc.) commenced their radiation in the
P. andrusovi Zone (Karádi et al., 2020). This is in contrast with the diverse conodont
species discovered in the M. bidentata Zone of the Baoshan area (Wang et al., 2019; Du
et al., 2020; Zeng et al., 2021; Jin et al., 2022) and of other early Sevatian strata around the
world (Table 3). Therefore, it is obvious that conodonts suffered a significant crisis in the
middle of the Sevatian.

Rigo et al. (2018) interpreted that an important bioevent corresponding to the presence
of conodont genus Parvigondolella occurred during a warm phase (W3) of late Norian
(Trotter et al., 2015). The progression of transitional form between M. bidentata and
P. andrusovi (Figs. 6PP–6QQ, 6VV–6AAA) and Parvigondolella sp. recovered from the
Potou section below the first occurrence of P. andrusovi allows a refined conodont
biostratigraphy with an interval of transitional forms between the M. bidentata Zone and
the P. andrusovi Zone that corresponds to this bioevent.

It is recommended that future studies should focus on this transitional interval
spanning the uppermost M. bidentata Zone to onset of the P. andrusovi Zone to
understand the underlying causes of this first crisis that heralded the end-Triassic
conodont extinction interval and the relationships of conodont evolution to environment
changes.

CONCLUSIONS
Conodont faunas were recovered from upper Norian (Upper Triassic) strata of the
Dashuitang and Nanshuba formations in two sections near Baoshan City in western
Yunnan Province. These assemblages provide important insights on the biostratigraphy
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and diversity history of Norian conodonts in China as well as throughout the Tethyan
realm. Conodont Mockina (M.) bidentata Zone and Parvigondolella (P.) andrusovi Zone
are identified in this area, thereby greatly improving the resolution of the Sevatian
biochronostratigraphy in the Baoshan area and enabling a more precise correlation with
other sections around the world. In total, 19 different forms of P1 elements, which belong
to six different form genera, are found within the M. bidentata Zone of lower Sevatian.
When these are combined with reported form species in the same conodont zone, a peak in
conodont diversity is revealed in the M. bidentata Zone. This peak was followed by a
distinct decline in conodont diversity and a pronounced morphologic change and turnover
in the uppermostM. bidentata Zone, which may greatly help to shed light on the study of
the first crisis of the protracted suite of end-Triassic mass extinctions.
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